Suppr超能文献

肝移植患者肝细胞癌早期复发预测列线图的开发

Development of a predictive nomogram for early recurrence of hepatocellular carcinoma in patients undergoing liver transplantation.

作者信息

Ma Ensi, Li Jianhua, Xing Hao, Li Ruidong, Shen Conghuan, Zhang Quanbao, Ma Zhenyu, Tao Yifeng, Qin Lunxiu, Zhao Jing, Wang Zhengxin

机构信息

Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.

Institute of Organ Transplantation, Fudan University, Shanghai, China.

出版信息

Ann Transl Med. 2021 Mar;9(6):468. doi: 10.21037/atm-21-334.

Abstract

BACKGROUND

An individual prognostic model that includes inflammation caused by the delayed recovery of liver function after surgery for the early recurrence of hepatocellular carcinoma (HCC) following liver transplantation (LT) has not been well determined. Our aim was to develop a nomogram model for predicting individual survival and early recurrence following LT for patients.

METHODS

Retrospective data, including clinical pathology and follow-up data, on HCC patients were collected between October 2016 and October 2019 at Huashan Hospital Affiliated to Fudan University. A nomogram estimating recurrence post-transplantation was constructed using multivariate Cox regression analysis.

RESULTS

A total of 210 patients were included in the present study. The multivariate estimators of recurrence consisted of age, maximum tumor diameter, tumor thrombus, microvascular invasion (MVI), alanine aminotransferase and alpha-fetoprotein on postoperative day 7. Nomogram of recurrence-free survival was developed. The calibration and discrimination of the novel model were assessed with the calibration curves and concordance index (C-index). Its reliability and advantages were evaluated by comparing it with the conventional American Joint Committee on Cancer (AJCC) 8th edition staging system using integrated discrimination improvement (IDI) and net reclassification improvement (NRI). In comparison to the AJCC 8th edition staging system, the C-index (development set: 0.796 0.643, validation set: 0.741 0.563), the area under the receiver operating characteristic curve (AUC) of the validation set (1-year AUC: 0.732 0.586, 2-year AUC: 0.705 0.504), the development set (1-year AUC: 0.799 0.551, 2-year AUC: 0.801 0.512), and this model's calibration plots all showed improved performance. In addition, NRI and IDI verified that the nomogram is an accurate prognostic tool. Subsequently, a web calculator was generated to assess the risk of tumor recurrence post-LT.

CONCLUSIONS

The nomogram, based on clinical and pathological factors, showed good accuracy in estimating prognostic recurrence and can be used to guide individual patient follow-up and treatment.

摘要

背景

尚未明确一种能纳入肝移植(LT)后肝细胞癌(HCC)早期复发中因肝功能延迟恢复所致炎症的个体预后模型。我们的目的是为患者开发一种预测LT后个体生存和早期复发的列线图模型。

方法

收集2016年10月至2019年10月复旦大学附属华山医院HCC患者的回顾性数据,包括临床病理和随访数据。使用多因素Cox回归分析构建估计移植后复发的列线图。

结果

本研究共纳入210例患者。复发的多因素预测指标包括年龄、最大肿瘤直径、肿瘤血栓、微血管侵犯(MVI)、术后第7天的丙氨酸转氨酶和甲胎蛋白。绘制了无复发生存列线图。采用校准曲线和一致性指数(C指数)评估新模型的校准和区分度。通过使用综合区分改善(IDI)和净重新分类改善(NRI)与传统美国癌症联合委员会(AJCC)第8版分期系统比较,评估其可靠性和优势。与AJCC第8版分期系统相比,C指数(开发集:0.796对0.643,验证集:0.741对0.563)、验证集的受试者操作特征曲线下面积(AUC)(1年AUC:0.732对0.586,2年AUC:0.705对0.504)、开发集(1年AUC:0.799对0.551,2年AUC:0.801对0.512)以及该模型的校准图均显示性能有所改善。此外,NRI和IDI证实列线图是一种准确的预后工具。随后,生成了一个网络计算器来评估LT后肿瘤复发风险。

结论

基于临床和病理因素的列线图在估计预后复发方面显示出良好的准确性,可用于指导个体患者的随访和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18dd/8039665/8dd4e76079b8/atm-09-06-468-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验