Suppr超能文献

基因组改变会影响前列腺癌进展过程中的细胞周期相关基因。

Genomic alterations impact cell cycle-related genes during prostate cancer progression.

机构信息

Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

出版信息

Endocr Relat Cancer. 2021 May 11;28(6):L5-L10. doi: 10.1530/ERC-21-0091.

Abstract

The recent genomic characterization of patient specimens has started to reveal the landscape of somatic alterations in clinical prostate cancer (CaP) and its association with disease progression and treatment resistance. The extent to which such alterations impact hallmarks of cancer is still unclear. Here, we interrogate genomic data from thousands of clinical CaP specimens that reflect progression from treatment-naïve, to castration-recurrent, and in some cases, neuroendocrine CaP for alterations in cell cycle-associated and -regulated genes, which are central to cancer initiation and progression. We evaluate gene signatures previously curated to evaluate G1-S and G2-M phase transitions or to represent the cell cycle-dependent proteome. The resulting CaP (stage)-specific overview confirmed the presence of well-known driver alterations impacting, for instance, the genes encoding p53 and MYC, and uncovered novel previously unrecognized mutations that affect others such as the PKMYT1 and MTBP genes. The cancer dependency and drugability of representative genomically altered cell cycle determinants were verified also. Taken together, these analyses on hundreds of often less-characterized cell cycle regulators expand considerably the scope of genomic alterations associated with CaP cell proliferation and cell cycle and isolate such regulatory proteins as putative drivers of CaP treatment resistance and entirely novel therapeutic targets for CaP therapy.

摘要

最近对患者标本的基因组特征分析开始揭示临床前列腺癌(CaP)中的体细胞改变的全貌及其与疾病进展和治疗耐药性的关联。这些改变在多大程度上影响癌症的特征仍不清楚。在这里,我们研究了数千份临床 CaP 标本的基因组数据,这些标本反映了从治疗初治、去势复发,在某些情况下还有神经内分泌 CaP 的进展,以研究与细胞周期相关和受其调控的基因中的改变,这些改变是癌症发生和进展的核心。我们评估了先前为评估 G1-S 和 G2-M 转变或代表细胞周期依赖性蛋白质组而精心设计的基因特征。由此产生的 CaP(分期)特异性概述证实了存在影响 p53 和 MYC 等基因的众所周知的驱动改变,并发现了以前未被识别的影响其他基因(如 PKMYT1 和 MTBP 基因)的新突变。还验证了代表性基因组改变的细胞周期决定因素的癌症依赖性和药物可开发性。总之,对数百个经常特征描述较少的细胞周期调节剂的这些分析大大扩展了与 CaP 细胞增殖和细胞周期相关的基因组改变的范围,并将这些调节蛋白分离出来,作为 CaP 治疗耐药性的潜在驱动因素和 CaP 治疗的全新治疗靶点。

相似文献

1
Genomic alterations impact cell cycle-related genes during prostate cancer progression.
Endocr Relat Cancer. 2021 May 11;28(6):L5-L10. doi: 10.1530/ERC-21-0091.
2
Novel insights in cell cycle dysregulation during prostate cancer progression.
Endocr Relat Cancer. 2021 May 11;28(6):R141-R155. doi: 10.1530/ERC-20-0517.
5
Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer.
Urol Oncol. 2015 Feb;33(2):85-94. doi: 10.1016/j.urolonc.2013.10.020. Epub 2014 Apr 24.
6
PKMYT1 is associated with prostate cancer malignancy and may serve as a therapeutic target.
Gene. 2020 Jun 20;744:144608. doi: 10.1016/j.gene.2020.144608. Epub 2020 Mar 29.
7
[Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
Cancer Radiother. 2001 Apr;5(2):109-29. doi: 10.1016/s1278-3218(01)00087-7.
8
[Analysis of gene expression profiles in gastric cancer cell cycle].
Zhonghua Zhong Liu Za Zhi. 2006 Aug;28(8):568-71.
9
BLM germline and somatic PKMYT1 and AHCY mutations: Genetic variations beyond MYCN and prognosis in neuroblastoma.
Med Hypotheses. 2016 Dec;97:22-25. doi: 10.1016/j.mehy.2016.10.008. Epub 2016 Oct 20.
10
A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target.
J Hematol Oncol. 2020 Sep 21;13(1):126. doi: 10.1186/s13045-020-00959-2.

引用本文的文献

2
The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.
Regen Ther. 2024 Dec 25;28:214-226. doi: 10.1016/j.reth.2024.11.017. eCollection 2025 Mar.
3
Characterization of tumor microenvironment infiltration and therapeutic responses of cell cycle-related genes' signature in breast cancer.
J Cancer Res Clin Oncol. 2023 Nov;149(15):13889-13904. doi: 10.1007/s00432-023-05198-9. Epub 2023 Aug 4.

本文引用的文献

1
PKMYT1 is associated with prostate cancer malignancy and may serve as a therapeutic target.
Gene. 2020 Jun 20;744:144608. doi: 10.1016/j.gene.2020.144608. Epub 2020 Mar 29.
2
CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer.
Cancer Cell. 2020 Jan 13;37(1):37-54.e9. doi: 10.1016/j.ccell.2019.11.003. Epub 2019 Dec 26.
3
CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation.
Cancer Discov. 2019 Nov;9(11):1538-1555. doi: 10.1158/2159-8290.CD-19-0189. Epub 2019 Aug 29.
4
The long tail of oncogenic drivers in prostate cancer.
Nat Genet. 2018 May;50(5):645-651. doi: 10.1038/s41588-018-0078-z. Epub 2018 Apr 2.
5
AHNAK2 is a Novel Prognostic Marker and Oncogenic Protein for Clear Cell Renal Cell Carcinoma.
Theranostics. 2017 Feb 27;7(5):1100-1113. doi: 10.7150/thno.18198. eCollection 2017.
6
Cell cycle protein Bora serves as a novel poor prognostic factor in multiple adenocarcinomas.
Oncotarget. 2017 Jul 4;8(27):43838-43852. doi: 10.18632/oncotarget.16631.
7
Integrative clinical genomics of advanced prostate cancer.
Cell. 2015 May 21;161(5):1215-1228. doi: 10.1016/j.cell.2015.05.001.
8
Oncogenic protein MTBP interacts with MYC to promote tumorigenesis.
Cancer Res. 2014 Jul 1;74(13):3591-602. doi: 10.1158/0008-5472.CAN-13-2149. Epub 2014 May 1.
10
Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines.
Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13009-14. doi: 10.1073/pnas.230445997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验