Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China.
J Neurophysiol. 2021 May 1;125(5):1954-1972. doi: 10.1152/jn.00435.2020. Epub 2021 Apr 14.
Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding. This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.
毛细胞在腹侧耳蜗核(VCN)中的时间编码精度对于声音定位和交流至关重要,这取决于快速且精确的动作电位(AP)的产生。电压门控钾(Kv)通道在这方面起着关键作用。大鼠 VCN 中的毛细胞表达 Kv1.1、1.2、1.3、1.6、3.1、4.2 和 4.3 亚基。Kv1.1 亚基有助于产生精确的单个 AP。然而,对于在毛细胞中表达的其他 Kv 亚基的功能了解有限。在这里,我们研究了 Kv 亚基在时间编码方面的功能多样性。我们使用全细胞膜片钳记录和药理学方法来表征具有不同亚基的 Kv 通道的电生理特性。只有当 Kv1.1 亚基被阻断时,神经元的放电模式才会从单个 AP 变为多个 AP。包括 Kv1.1、1.2、1.6 或 3.1 在内的 Kv 亚基通过降低膜兴奋性、缩短 AP 潜伏期、减少抖动和调节 AP 动力学来增强时间编码。同时,所有 Kv 亚基通过缩小半宽和加速下降率来快速复极化和锐化峰,并且 Kv1.1 亚基还影响 AP 的去极化。Kv1.1、1.2 和 1.6 亚基赋予毛细胞快速的时间常数和低的膜输入电阻,以增强尖峰定时精度。本研究表明,Kv 通道通过使用电生理和药理学方法在毛细胞中影响固有膜特性来优化快速和可靠 AP 的产生,从而对时间编码产生不同的影响。不同的 Kv 通道具有不同的电生理特性,有助于改变膜特性和调节神经元兴奋性之间的相互作用,从而改善时间编码。我们得出结论,Kv 通道专门用于通过优化可靠 AP 的产生来促进声输入的精确和快速编码。