Suppr超能文献

带隙耦合模板自催化促进高纯度sp纳米碳的生长

Bandgap-Coupled Template Autocatalysis toward the Growth of High-Purity sp Nanocarbons.

作者信息

Gao Jun, Zhu Zhenxing, Shen Boyuan, Bai Yunxiang, Sun Silei, Wei Fei

机构信息

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China.

出版信息

Adv Sci (Weinh). 2021 Feb 18;8(7):2003078. doi: 10.1002/advs.202003078. eCollection 2021 Apr.

Abstract

Extraordinary properties and great application potentials of carbon nanotubes (CNT) and graphene fundamentally rely on their large-scale perfect sp structure. Particularly for high-end applications, ultralow defect density and ultrahigh selectivity are prerequisites, for which metal-catalyzed chemical vapor deposition (CVD) is the most promising approach. Due to their structure and peculiarity, CNTs and graphene can themselves provide growth templates and nonlocal dual conductance, serving as template autocatalysts with tunable bandgap during the CVD. However, current growth kinetics models all focus on the external factors and edges. Here, the growth kinetics of sp nanocarbons is elaborated from the perspective of template autocatalysis and holistic electronic structure. After reviewing current growth kinetics, various representative works involving CVD growth of different sp nanocarbons are analyzed, to reveal their bandgap-coupled kinetics and resulting selective synthesis. Recent progress is then reviewed, which has demonstrated the interlocking between the atomic assembly rate and bandgap of CNTs, with an explicit volcano dependence whose peak would be determined by the environment. In addition, the topological protection for perfect sp structure and the defect-induced perturbation for the interlocking are discussed. Finally, the prospects for the kinetic selective growth of perfect nanocarbons are proposed.

摘要

碳纳米管(CNT)和石墨烯的非凡特性及巨大应用潜力,从根本上依赖于其大规模完美的sp结构。特别是对于高端应用,超低的缺陷密度和超高的选择性是先决条件,而金属催化化学气相沉积(CVD)是最具前景的方法。由于碳纳米管和石墨烯的结构及特性,它们自身可以提供生长模板和非局域双电导,在化学气相沉积过程中作为具有可调带隙的模板自催化剂。然而,目前的生长动力学模型都聚焦于外部因素和边缘。在此,从模板自催化和整体电子结构的角度阐述了sp纳米碳的生长动力学。在回顾当前的生长动力学之后分析了涉及不同sp纳米碳化学气相沉积生长的各种代表性研究工作,以揭示其带隙耦合动力学及由此产生的选择性合成。接着回顾了近期的进展,这些进展已证明了碳纳米管的原子组装速率与带隙之间的相互关联,呈现出明确的火山型依赖关系,其峰值将由环境决定。此外,还讨论了对完美sp结构的拓扑保护以及对这种相互关联的缺陷诱导扰动。最后,提出了完美纳米碳动力学选择性生长的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7301/8025012/e2d47d34951a/ADVS-8-2003078-g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验