Zong Wei, Chui Ningbo, Tian Zhihong, Li Yuying, Yang Chao, Rao Dewei, Wang Wei, Huang Jiajia, Wang Jingtao, Lai Feili, Liu Tianxi
School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China.
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 P. R. China.
Adv Sci (Weinh). 2021 Feb 2;8(7):2004142. doi: 10.1002/advs.202004142. eCollection 2021 Apr.
Size engineering is deemed to be an adoptable method to boost the electrochemical properties of potassium-ion storage; however, it remains a critical challenge to significantly reduce the nanoparticle size without compromising the uniformity. In this work, a series of MoP nanoparticle splotched nitrogen-doped carbon nanosheets (MoP@NC) is synthesized. Due to the coordinate and hydrogen bonds in the water-soluble polyacrylamide hydrogel, MoP is uniformly confined in a 3D porous NC to form ultrafine nanoparticles which facilitate the extreme exposure of abundant three-phase boundaries (MoP, NC, and electrolyte) for ionic binding and storage. Consequently, MoP@NC-1 delivers an excellent capacity performance (256.1 mAh g at 0.1 A g) and long-term cycling durability (89.9% capacitance retention after 800 cycles). It is further confirmed via density functional theory calculations that the smaller the MoP nanoparticle, the larger the three-phase boundary achieved for favoring competitive binding energy toward potassium ions. Finally, MoP@NC-1 is applied as highly electroactive additive for 3D printing ink to fabricate 3D-printed potassium-ion hybrid capacitors, which delivers high gravimetric energy/power density of 69.7 Wh kg/2041.6 W kg, as well as favorable areal energy/power density of 0.34 mWh cm/9.97 mW cm.
尺寸工程被认为是一种可采用的方法来提高钾离子存储的电化学性能;然而,在不影响均匀性的情况下显著减小纳米颗粒尺寸仍然是一项严峻挑战。在这项工作中,合成了一系列MoP纳米颗粒点缀的氮掺杂碳纳米片(MoP@NC)。由于水溶性聚丙烯酰胺水凝胶中的配位键和氢键,MoP被均匀地限制在三维多孔NC中形成超细微纳米颗粒,这有利于大量三相界面(MoP、NC和电解质)的极度暴露,用于离子结合和存储。因此,MoP@NC-1表现出优异的容量性能(在0.1 A g时为256.1 mAh g)和长期循环耐久性(800次循环后电容保持率为89.9%)。通过密度泛函理论计算进一步证实,MoP纳米颗粒越小,实现的三相界面越大,有利于对钾离子具有竞争性结合能。最后,MoP@NC-1被用作3D打印油墨的高电活性添加剂,以制造3D打印钾离子混合电容器,其具有69.7 Wh kg/2041.6 W kg的高重量能量/功率密度,以及0.34 mWh cm/9.97 mW cm的良好面积能量/功率密度。