Suppr超能文献

复发性胶质母细胞瘤的最佳治疗方法:一项贝叶斯网络荟萃分析。

Optimal Therapies for Recurrent Glioblastoma: A Bayesian Network Meta-Analysis.

作者信息

Chen Wenlin, Wang Yuekun, Zhao Binghao, Liu Penghao, Liu Lei, Wang Yu, Ma Wenbin

机构信息

Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Oncol. 2021 Mar 29;11:641878. doi: 10.3389/fonc.2021.641878. eCollection 2021.

Abstract

The optimal treatment of recurrent glioblastoma (GBM) remains controversial. Therefore, our study aimed to compare and rank active therapies in recurrent GBM. We performed a systematic review and a Bayesian network meta-analysis. We obtained a treatment hierarchy using the surface under the cumulative ranking curve and mean ranks. A cluster analysis was conducted to aggregate the separated results of three outcomes. The protocol was registered in PROSPERO (CRD42019146794). A total of 1,667 citations were identified, and 15 eligible articles with 17 treatments remained in the final network meta-analysis. Pairwise comparison showed no significant difference on the 6-month progression-free survival (6-m PFS) rate, objective response rate (ORR), and overall survival (OS). Among the reports, cediranib plus lomustine (CCNU) corresponded to the highest rates of grade 3-4 adverse events. Ranking and cluster analysis indicated that bevacizumab (BEV) plus CCNU and regorafenib had a higher efficacy on the ORR, 6-m PFS rate and OS, and that BEV monotherapy or BEV combined with active drug therapies was advantageous for the ORR and 6-m PFS rate. Additionally, tumor treatment fields (TTF) plus BEV showed a relatively higher SUCRA value in OS. According to ranking and cluster analysis, BEV plus CCNU and regorafenib are the primary recommendations for treatment. BEV monotherapy alone or combined with active drug therapies are recommended in patients with severe neurological symptoms. Advanced therapy, such as TTF and immunotherapy, remain to be investigated in future studies.

摘要

复发性胶质母细胞瘤(GBM)的最佳治疗方案仍存在争议。因此,我们的研究旨在比较复发性GBM的有效治疗方法并进行排序。我们进行了一项系统评价和贝叶斯网络荟萃分析。我们使用累积排序曲线下面积和平均秩次获得了一个治疗等级体系。进行了聚类分析以汇总三个结局的单独结果。该方案已在国际前瞻性系统评价注册库(PROSPERO,注册号:CRD42019146794)中登记。共识别出1667篇文献,最终的网络荟萃分析纳入了15篇符合条件的文章,涉及17种治疗方法。成对比较显示,在6个月无进展生存率(6-m PFS)、客观缓解率(ORR)和总生存期(OS)方面无显著差异。在这些报告中,西地尼布联合洛莫司汀(CCNU)的3-4级不良事件发生率最高。排序和聚类分析表明,贝伐单抗(BEV)联合CCNU以及瑞戈非尼在ORR、6-m PFS率和OS方面具有更高的疗效,且BEV单药治疗或BEV联合活性药物治疗在ORR和6-m PFS率方面具有优势。此外,肿瘤治疗电场(TTF)联合BEV在OS方面显示出相对较高的累积排序曲线下面积值(SUCRA)。根据排序和聚类分析,BEV联合CCNU和瑞戈非尼是主要的治疗推荐。对于有严重神经症状的患者,建议单独使用BEV单药治疗或联合活性药物治疗。诸如TTF和免疫治疗等先进疗法仍有待未来研究进一步探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3459/8039381/85455761ec24/fonc-11-641878-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验