Balcerowicz Martin, Di Antonio Marco, Chung Betty Y W
Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
Imperial College London, Chemistry Department, Molecular Science Research Hub, London, UK.
Bio Protoc. 2021 Mar 20;11(6):e3950. doi: 10.21769/BioProtoc.3950.
RNA secondary structures are highly dynamic and subject to prompt changes in response to the environment. Temperature in particular has a strong impact on RNA structural conformation, and temperature-sensitive RNA hairpin structures have been exploited by multiple organisms to modify the rate of translation in response to temperature changes. Observing RNA structural changes in real-time over a range of temperatures is therefore highly desirable. A variety of approaches exists that probe RNA secondary structures, but many of these either require large amount and/or extensive processing of the RNA or cannot be applied under physiological conditions, rendering the observation of structural dynamics over a range of temperatures difficult. Here, we describe the use of a dually fluorescently labelled RNA oligonucleotide (containing the predicted hairpin structure) that can be used to monitor subtle RNA-structural dynamics by Förster Resonance Energy Transfer (FRET) at different temperatures with RNA concentration as low as 200 nM. FRET efficiency varies as a function of the fluorophores' distance; high efficiency can thus be correlated to a stable hairpin structure, whilst a reduction in FRET efficiency reflects a partial opening of the hairpin or a destabilisation of this structure. The same RNA sequence can also be used for Circular Dichroism spectroscopy to observe global changes of RNA secondary structure at a given temperature. The combination of these approaches allowed us to monitor RNA structural dynamics over a range of temperatures in real-time and correlate structural changes to plant biology phenotypes. .
RNA二级结构高度动态,会根据环境迅速发生变化。尤其是温度对RNA结构构象有强烈影响,多种生物体利用温度敏感的RNA发夹结构来响应温度变化,从而改变翻译速率。因此,非常希望能在一系列温度范围内实时观察RNA的结构变化。目前有多种探测RNA二级结构的方法,但其中许多方法要么需要大量的RNA和/或进行广泛的RNA处理,要么无法在生理条件下应用,这使得在一系列温度范围内观察结构动态变得困难。在此,我们描述了一种双荧光标记的RNA寡核苷酸(含有预测的发夹结构)的用途,它可用于通过Förster共振能量转移(FRET)在不同温度下以低至200 nM的RNA浓度监测细微的RNA结构动态。FRET效率随荧光团之间距离的变化而变化;因此,高效率可与稳定的发夹结构相关联,而FRET效率的降低则反映出发夹的部分打开或该结构的不稳定。相同的RNA序列也可用于圆二色光谱法,以观察给定温度下RNA二级结构的整体变化。这些方法的结合使我们能够实时监测一系列温度范围内的RNA结构动态,并将结构变化与植物生物学表型相关联。