Suppr超能文献

使用贝叶斯方法发现获得性拉帕替尼耐药中的新型癌症生物标志物。

Discovering novel cancer bio-markers in acquired lapatinib resistance using Bayesian methods.

机构信息

iThree Institute, Faculty of Science, University of Technology Sydney, Ultimo, 2007, NSW, Australia.

Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab137.

Abstract

Signalling transduction pathways (STPs) are commonly hijacked by many cancers for their growth and malignancy, but demystifying their underlying mechanisms is difficult. Here, we developed methodologies with a fully Bayesian approach in discovering novel driver bio-markers in aberrant STPs given high-throughput gene expression (GE) data. This project, namely 'PathTurbEr' (Pathway Perturbation Driver) uses the GE dataset derived from the lapatinib (an EGFR/HER dual inhibitor) sensitive and resistant samples from breast cancer cell lines (SKBR3). Differential expression analysis revealed 512 differentially expressed genes (DEGs) and their pathway enrichment revealed 13 highly perturbed singalling pathways in lapatinib resistance, including PI3K-AKT, Chemokine, Hippo and TGF-$\beta $ singalling pathways. Next, the aberration in TGF-$\beta $ STP was modelled as a causal Bayesian network (BN) using three MCMC sampling methods, i.e. Neighbourhood sampler (NS) and Hit-and-Run (HAR) sampler that potentially yield robust inference with lower chances of getting stuck at local optima and faster convergence compared to other state-of-art methods. Next, we examined the structural features of the optimal BN as a statistical process that generates the global structure using $p_1$-model, a special class of Exponential Random Graph Models (ERGMs), and MCMC methods for their hyper-parameter sampling. This step enabled key drivers identification that drive the aberration within the perturbed BN structure of STP, and yielded 34, 34 and 23 perturbation driver genes out of 80 constituent genes of three perturbed STP models of TGF-$\beta $ signalling inferred by NS, HAR and MH sampling methods, respectively. Functional-relevance and disease-relevance analyses suggested their significant associations with breast cancer progression/resistance.

摘要

信号转导通路(STPs)通常被许多癌症劫持用于其生长和恶性转化,但要揭示其潜在机制却很困难。在这里,我们开发了一种完全基于贝叶斯方法的方法,用于从高通量基因表达(GE)数据中发现异常 STP 中的新型驱动生物标志物。该项目名为“PathTurbEr”(Pathway Perturbation Driver),使用源自 lapatinib(一种 EGFR/HER 双重抑制剂)敏感和耐药的乳腺癌细胞系(SKBR3)样本的 GE 数据集。差异表达分析显示 512 个差异表达基因(DEGs),其通路富集显示 lapatinib 耐药中有 13 个高度受扰的信号通路,包括 PI3K-AKT、趋化因子、Hippo 和 TGF-$\beta $信号通路。接下来,使用三种 MCMC 采样方法,即邻域采样器(NS)和 Hit-and-Run(HAR)采样器,将 TGF-$\beta $STP 的异常建模为因果贝叶斯网络(BN),这两种方法有可能产生更稳健的推断,并且与其他最先进的方法相比,不太可能陷入局部最优,收敛速度更快。接下来,我们检查了最优 BN 的结构特征,作为一种使用 $p_1$-模型生成全局结构的统计过程,$p_1$-模型是指数随机图模型(ERGMs)的一个特殊类别,以及 MCMC 方法用于其超参数采样。这一步使得能够识别出驱动 STP 中受扰 BN 结构发生偏差的关键驱动因素,并从推断出的三个 TGF-$\beta $信号受扰 BN 模型的 80 个组成基因中分别产生了 34、34 和 23 个扰动驱动基因,这些基因分别由 NS、HAR 和 MH 采样方法推断得出。功能相关性和疾病相关性分析表明,它们与乳腺癌的进展/耐药性有显著关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验