Zhuo Ming-Peng, He Guang-Peng, Wang Xue-Dong, Liao Liang-Sheng
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, P. R. China.
Institute of Organic Optoelectronics, JITRI, Wujiang, Suzhou, Jiangsu, P. R. China.
Nat Commun. 2021 Apr 15;12(1):2252. doi: 10.1038/s41467-021-22513-5.
Rationally designing and precisely constructing the dimensions, configurations and compositions of organic nanomaterials are key issues in material chemistry. Nevertheless, the precise synthesis of organic heterostructure nanomaterials remains challenging owing to the difficulty of manipulating the homogeneous/heterogeneous-nucleation process and the complex epitaxial relationships of combinations of dissimilar materials. Herein, we propose a hierarchical epitaxial-growth approach with the combination of longitudinal and horizontal epitaxial-growth modes for the design and synthesis of a variety of organic superstructure microwires with accurate spatial organisation by regulating the heterogeneous-nucleation crystallisation process. The lattice-matched longitudinal and horizontal epitaxial-growth modes are separately employed to construct the primary organic core/shell and segmented heterostructure microwires. Significantly, these primary organic core/shell and segmented microwires are further applied to construct the core/shell-segmented and segmented-core/shell type's organic superstructure microwires through the implementation of multiple spatial epitaxial-growth modes. This strategy can be generalised to all organic microwires with tailored multiple substructures, which affords an avenue to manipulate their physical/chemical features for various applications.
合理设计并精确构建有机纳米材料的尺寸、构型和组成是材料化学中的关键问题。然而,由于难以控制均相/异相的成核过程以及不同材料组合的复杂外延关系,有机异质结构纳米材料的精确合成仍然具有挑战性。在此,我们提出了一种分级外延生长方法,该方法结合了纵向和横向外延生长模式,通过调节异相成核结晶过程,来设计和合成具有精确空间组织的各种有机超结构微丝。晶格匹配的纵向和横向外延生长模式分别用于构建初级有机核壳和分段异质结构微丝。值得注意的是,通过实施多种空间外延生长模式,这些初级有机核壳和分段微丝可进一步用于构建核壳分段和分段核壳型的有机超结构微丝。该策略可推广到所有具有定制多个子结构的有机微丝,为操纵其物理/化学特性以用于各种应用提供了一条途径。