Jiang Jia-Hao, Zhao Shuai, Zhang Jia-Xuan, Lv Zhao-Ji, Song Jian, Sun Yanqiu, Liao Liang-Sheng, Wang Xue-Dong
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China.
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, PR China.
Nano Lett. 2024 Oct 7. doi: 10.1021/acs.nanolett.4c03330.
Organic core/shell heterostructures have undergone rapid progress in materials chemistry owing to the integration of a wide array of unique properties. Nonetheless, the intricate challenge of regulating homogeneous nucleation and phase separation processes in excessively analogous cocrystal structures presents a formidable barrier to expanding the synthesis strategy for organic core/shell heterostructures. Herein, we successfully achieved a phase separation growth process facilitated by the organic alloy interface layer through a dynamic visualization to capture the intricate morphological evolution. By finely regulating the nucleation process, homogeneous self-assembly induced by high chemical and structural compatibility is circumvented, enabling the formation of organic core/shell heterostructures. Notably, this core/shell architecture boasts dual-wavelength emission at 496 and 696 nm, accompanied by an optical loss coefficient of 0.092 dB per micrometer. This methodology shows potential for extending to the scalable design of other conformational cocrystal heterostructure systems, thereby offering valuable insights into the realm of organic photonics.
由于整合了一系列独特性能,有机核壳异质结构在材料化学领域取得了迅速进展。尽管如此,在极为相似的共晶结构中调节均匀成核和相分离过程这一复杂挑战,对扩展有机核壳异质结构的合成策略构成了巨大障碍。在此,我们通过动态可视化成功实现了由有机合金界面层促进的相分离生长过程,以捕捉复杂的形态演变。通过精细调节成核过程,避免了由高化学和结构相容性诱导的均匀自组装,从而能够形成有机核壳异质结构。值得注意的是,这种核壳结构在496和696纳米处具有双波长发射,光学损耗系数为每微米0.092分贝。该方法显示出扩展到其他构象共晶异质结构系统的可扩展设计的潜力,从而为有机光子学领域提供了有价值的见解。