Suppr超能文献

一种用于评估单调性的分层贝叶斯状态轨迹分析,同时考虑到个体、项目和试验水平的依赖性。

A hierarchical Bayesian state trace analysis for assessing monotonicity while factoring out subject, item, and trial level dependencies.

作者信息

Sadil Patrick, Cowell Rosemary A, Huber David E

机构信息

Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA.

出版信息

J Math Psychol. 2019 Jun;90:118-131. doi: 10.1016/j.jmp.2019.01.003. Epub 2019 Mar 22.

Abstract

State trace analyses assess the latent dimensionality of a cognitive process by asking whether the means of two dependent variables conform to a monotonic function across a set of conditions. Using an assumption of independence between the measures, recently proposed statistical tests address bivariate measurement error, allowing both frequentist and Bayesian analyses of monotonicity (e.g., Davis-Stober, Morey, Gretton, & Heathcote, 2016; Kalish, Dunn, Burdakov, & Sysoev, 2016). However, inference can be biased by unacknowledged dependencies between measures, particularly when the data are insufficient to overwhelm an incorrect prior assumption of independence. To address this limitation, we developed a hierarchical Bayesian model that explicitly models the separate roles of subject, item, and trial-level dependencies between two measures. Assessment of monotonicity is then performed by fitting separate models that do or do not allow a non-monotonic relation between the condition effects (i.e., same vs. different rank orders). The Widely Applicable Information Criterion (WAIC) and Pseudo Bayesian Model Averaging - cross validation measures of model fit - are used for model comparison, providing an inferential conclusion regarding the dimensionality of the latent psychological space. We validated this new state trace analysis technique using model recovery simulation studies, which assumed different ground truths regarding monotonicity and the direction/magnitude of the subject- and trial-level dependence. We also provide an example application of this new technique to a visual object learning study that compared performance on a visual retrieval task (forced choice part recognition) versus a verbal retrieval task (cued recall).

摘要

状态追踪分析通过询问在一组条件下两个因变量的均值是否符合单调函数来评估认知过程的潜在维度。利用测量之间独立性的假设,最近提出的统计检验解决了双变量测量误差问题,允许对单调性进行频率主义和贝叶斯分析(例如,Davis-Stober、Morey、Gretton和Heathcote,2016年;Kalish、Dunn、Burdakov和Sysoev,2016年)。然而,推理可能会因测量之间未被认识到的依赖性而产生偏差,特别是当数据不足以克服错误的独立性先验假设时。为了解决这一局限性,我们开发了一种层次贝叶斯模型,该模型明确地对两个测量之间的主体、项目和试验水平依赖性的不同作用进行建模。然后,通过拟合允许或不允许条件效应之间存在非单调关系的单独模型(即相同与不同的秩次顺序)来进行单调性评估。广泛适用信息准则(WAIC)和伪贝叶斯模型平均——模型拟合的交叉验证指标——用于模型比较,从而得出关于潜在心理空间维度的推断结论。我们使用模型恢复模拟研究验证了这种新的状态追踪分析技术,该研究假设了关于单调性以及主体和试验水平依赖性的方向/大小的不同真实情况。我们还提供了这种新技术在视觉对象学习研究中的一个应用示例,该研究比较了视觉检索任务(强制选择部分识别)与言语检索任务(线索回忆)的表现。

相似文献

本文引用的文献

3
Assessing the dissociability of recollection and familiarity in recognition memory.评估再认记忆中回忆和熟悉的可分离性。
J Exp Psychol Learn Mem Cogn. 2012 Nov;38(6):1591-1607. doi: 10.1037/a0028144. Epub 2012 May 7.
4
The design and analysis of state-trace experiments.状态轨迹实验的设计与分析。
Psychol Methods. 2012 Mar;17(1):78-99. doi: 10.1037/a0025809. Epub 2011 Oct 31.
7
Continuous flash suppression reduces negative afterimages.持续闪光抑制可减少负后像。
Nat Neurosci. 2005 Aug;8(8):1096-101. doi: 10.1038/nn1500. Epub 2005 Jul 3.
9
AIC model selection using Akaike weights.使用赤池权重进行AIC模型选择。
Psychon Bull Rev. 2004 Feb;11(1):192-6. doi: 10.3758/bf03206482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验