Suppr超能文献

评估单核苷酸多态性选择方法,以开发一种适用于南非德拉肯斯伯格肉牛中基因分型的低密度面板。

Assessing single-nucleotide polymorphism selection methods for the development of a low-density panel optimized for imputation in South African Drakensberger beef cattle.

机构信息

Department of Animal Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.

Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.

出版信息

J Anim Sci. 2021 Jul 1;99(7). doi: 10.1093/jas/skab118.

Abstract

A major obstacle in applying genomic selection (GS) to uniquely adapted local breeds in less-developed countries has been the cost of genotyping at high densities of single-nucleotide polymorphisms (SNP). Cost reduction can be achieved by imputing genotypes from lower to higher densities. Locally adapted breeds tend to be admixed and exhibit a high degree of genomic heterogeneity thus necessitating the optimization of SNP selection for downstream imputation. The aim of this study was to quantify the achievable imputation accuracy for a sample of 1,135 South African (SA) Drakensberger cattle using several custom-derived lower-density panels varying in both SNP density and how the SNP were selected. From a pool of 120,608 genotyped SNP, subsets of SNP were chosen (1) at random, (2) with even genomic dispersion, (3) by maximizing the mean minor allele frequency (MAF), (4) using a combined score of MAF and linkage disequilibrium (LD), (5) using a partitioning-around-medoids (PAM) algorithm, and finally (6) using a hierarchical LD-based clustering algorithm. Imputation accuracy to higher density improved as SNP density increased; animal-wise imputation accuracy defined as the within-animal correlation between the imputed and actual alleles ranged from 0.625 to 0.990 when 2,500 randomly selected SNP were chosen vs. a range of 0.918 to 0.999 when 50,000 randomly selected SNP were used. At a panel density of 10,000 SNP, the mean (standard deviation) animal-wise allele concordance rate was 0.976 (0.018) vs. 0.982 (0.014) when the worst (i.e., random) as opposed to the best (i.e., combination of MAF and LD) SNP selection strategy was employed. A difference of 0.071 units was observed between the mean correlation-based accuracy of imputed SNP categorized as low (0.01 < MAF ≤ 0.1) vs. high MAF (0.4 < MAF ≤ 0.5). Greater mean imputation accuracy was achieved for SNP located on autosomal extremes when these regions were populated with more SNP. The presented results suggested that genotype imputation can be a practical cost-saving strategy for indigenous breeds such as the SA Drakensberger. Based on the results, a genotyping panel consisting of ~10,000 SNP selected based on a combination of MAF and LD would suffice in achieving a <3% imputation error rate for a breed characterized by genomic admixture on the condition that these SNP are selected based on breed-specific selection criteria.

摘要

在欠发达国家应用基因组选择(GS)来适应独特的本地品种时,一个主要障碍是单核苷酸多态性(SNP)高密度基因分型的成本。通过从较低密度向较高密度推断基因型,可以降低成本。适应当地环境的品种往往是混合的,表现出高度的基因组异质性,因此需要优化 SNP 选择以进行下游推断。本研究的目的是使用几种不同密度的自定义较低密度面板来量化对 1,135 头南非(SA)Drakensberger 牛样本的可实现推断准确性,这些面板的 SNP 密度和 SNP 选择方式各不相同。从一组 120,608 个已基因分型的 SNP 中,选择了 SNP 子集(1)随机选择,(2)基因组均匀分散,(3)最大化平均次要等位基因频率(MAF),(4)使用 MAF 和连锁不平衡(LD)的组合得分,(5)使用分区围绕中值(PAM)算法,最后(6)使用基于层次 LD 的聚类算法。随着 SNP 密度的增加,对更高密度的推断准确性也得到了提高;动物内推断准确性定义为推断和实际等位基因之间的个体内相关性,当选择 2500 个随机选择的 SNP 时,范围为 0.625 至 0.990,而当选择 50,000 个随机选择的 SNP 时,范围为 0.918 至 0.999。在面板密度为 10,000 SNP 时,最差(即随机)与最佳(即 MAF 和 LD 的组合)SNP 选择策略相比,平均(标准偏差)动物内等位基因一致性率为 0.976(0.018)vs. 0.982(0.014)。当将分类为低 MAF(0.01 < MAF ≤ 0.1)与高 MAF(0.4 < MAF ≤ 0.5)的 SNP 的基于相关性的推断 SNP 准确性的平均值进行比较时,观察到 0.071 个单位的差异。对于位于常染色体极端的 SNP,当这些区域填充更多 SNP 时,其平均推断准确性更高。结果表明,对于像南非 Drakensberger 这样的本地品种,基因型推断可以是一种实用的节省成本的策略。基于这些结果,由基于 MAF 和 LD 的组合选择的约 10,000 个 SNP 组成的基因分型面板将足以实现<3%的误报率,前提是这些 SNP 是根据特定品种的选择标准选择的。

相似文献

7
Accuracy of genotype imputation in Nelore cattle.
Genet Sel Evol. 2014 Oct 10;46(1):69. doi: 10.1186/s12711-014-0069-1.
8
Within- and across-breed imputation of high-density genotypes in dairy and beef cattle from medium- and low-density genotypes.
J Anim Breed Genet. 2014 Jun;131(3):165-72. doi: 10.1111/jbg.12067. Epub 2013 Dec 5.
10
High-density marker imputation accuracy in sixteen French cattle breeds.
Genet Sel Evol. 2013 Sep 3;45(1):33. doi: 10.1186/1297-9686-45-33.

本文引用的文献

1
Genome-Wide SNP Discovery in Indigenous Cattle Breeds of South Africa.
Front Genet. 2019 Mar 29;10:273. doi: 10.3389/fgene.2019.00273. eCollection 2019.
3
Design of low density SNP chips for genotype imputation in layer chicken.
BMC Genet. 2018 Dec 4;19(1):108. doi: 10.1186/s12863-018-0695-7.
5
Comparing strategies for selection of low-density SNPs for imputation-mediated genomic prediction in U. S. Holsteins.
Genetica. 2018 Apr;146(2):137-149. doi: 10.1007/s10709-017-0004-9. Epub 2017 Dec 14.
6
Genotype imputation in a tropical crossbred dairy cattle population.
J Dairy Sci. 2017 Dec;100(12):9623-9634. doi: 10.3168/jds.2017-12732. Epub 2017 Oct 4.
7
Genotype Imputation To Improve the Cost-Efficiency of Genomic Selection in Farmed Atlantic Salmon.
G3 (Bethesda). 2017 Apr 3;7(4):1377-1383. doi: 10.1534/g3.117.040717.
9
SNPConvert: SNP Array Standardization and Integration in Livestock Species.
Microarrays (Basel). 2016 Jun 9;5(2):17. doi: 10.3390/microarrays5020017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验