Suppr超能文献

用于预测大脑中动脉动脉瘤破裂风险的列线图。

A nomogram to predict rupture risk of middle cerebral artery aneurysm.

机构信息

Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.

出版信息

Neurol Sci. 2021 Dec;42(12):5289-5296. doi: 10.1007/s10072-021-05255-6. Epub 2021 Apr 15.

Abstract

BACKGROUND

Determining the rupture risk of unruptured intracranial aneurysm is crucial for treatment strategy. The purpose of this study was to predict the rupture risk of middle cerebral artery (MCA) aneurysms using a machine learning technique.

METHODS

We retrospectively reviewed 403 MCA aneurysms and randomly partitioned them into the training and testing datasets with a ratio of 8:2. A generalized linear model with logit link was developed using training dataset to predict the aneurysm rupture risk based on the clinical variables and morphological features manually measured from computed tomography angiography. To facilitate the clinical application, we further constructed an easy-to-use nomogram based on the developed model.

RESULTS

Ruptured MCA aneurysm had larger aneurysm size, aneurysm height, perpendicular height, aspect ratio, size ratio, bottleneck factor, and height-width ratio. Presence of a daughter-sac was more common in ruptured than in unruptured MCA aneurysms. Six features, including aneurysm multiplicity, lobulations, size ratio, bottleneck factor, height-width ratio, and aneurysm angle, were adopted in the model after feature selection. The model achieved a relatively good performance with areas under the receiver operating characteristic curves of 0.77 in the training dataset and 0.76 in the testing dataset. The nomogram provided a visual interpretation of our model, and the rupture risk probability of MCA aneurysms can be directly read from it.

CONCLUSION

Our model can be used to predict the rupture risk of MCA aneurysm.

摘要

背景

确定未破裂颅内动脉瘤的破裂风险对于治疗策略至关重要。本研究旨在使用机器学习技术预测大脑中动脉(MCA)动脉瘤的破裂风险。

方法

我们回顾性分析了 403 例 MCA 动脉瘤,并将其随机分为训练集和测试集,比例为 8:2。使用训练数据集,通过广义线性模型(logit 链接),基于从计算机断层血管造影手动测量的临床变量和形态特征,预测动脉瘤破裂风险。为了便于临床应用,我们进一步基于开发的模型构建了一个易于使用的列线图。

结果

破裂的 MCA 动脉瘤具有更大的动脉瘤大小、动脉瘤高度、垂直高度、纵横比、大小比、瓶颈因子和高度-宽度比。破裂的 MCA 动脉瘤比未破裂的 MCA 动脉瘤更常见存在子囊。经过特征选择,模型采用了 6 个特征,包括动脉瘤多发性、分叶、大小比、瓶颈因子、高度-宽度比和动脉瘤角度。该模型在训练数据集和测试数据集中的受试者工作特征曲线下面积分别为 0.77 和 0.76,具有较好的性能。列线图提供了我们模型的直观解释,可直接从列线图中读取 MCA 动脉瘤的破裂风险概率。

结论

我们的模型可用于预测 MCA 动脉瘤的破裂风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验