Kim Hyun, Abdelrahman Mustafa K, Choi Joonmyung, Kim Hongdeok, Maeng Jimin, Wang Suitu, Javed Mahjabeen, Rivera-Tarazona Laura K, Lee Habeom, Ko Seung Hwan, Ware Taylor H
Sensors and Electron Devices Directorate, CCDC Army Research Laboratory, Adelphi, MD, 20783, USA.
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.
Adv Mater. 2021 Jun;33(22):e2008434. doi: 10.1002/adma.202008434. Epub 2021 Apr 15.
Cracks are typically associated with the failure of materials. However, cracks can also be used to create periodic patterns on the surfaces of materials, as observed in the skin of crocodiles and elephants. In synthetic materials, surface patterns are critical to micro- and nanoscale fabrication processes. Here, a strategy is presented that enables freely programmable patterns of cracks on the surface of a polymer and then uses these cracks to pattern other materials. Cracks form during deposition of a thin film metal on a liquid crystal polymer network (LCN) and follow the spatially patterned molecular order of the polymer. These patterned sub-micrometer scale cracks have an order parameter of 0.98 ± 0.02 and form readily over centimeter-scale areas on the flexible substrates. The patterning of the LCN enables cracks that turn corners, spiral azimuthally, or radiate from a point. Conductive inks can be filled into these oriented cracks, resulting in flexible, anisotropic, and transparent conductors. This materials-based processing approach to patterning cracks enables unprecedented control of the orientation, length, width, and depth of the cracks without costly lithography methods. This approach promises new architectures of electronics, sensors, fluidics, optics, and other devices with micro- and nanoscale features.
裂纹通常与材料的失效相关。然而,正如在鳄鱼和大象的皮肤中所观察到的那样,裂纹也可用于在材料表面创造周期性图案。在合成材料中,表面图案对于微纳尺度的制造工艺至关重要。在此,我们提出了一种策略,该策略能够在聚合物表面实现裂纹的自由可编程图案化,然后利用这些裂纹对其他材料进行图案化。裂纹在液晶聚合物网络(LCN)上沉积薄膜金属的过程中形成,并遵循聚合物的空间图案化分子排列。这些图案化的亚微米级裂纹的序参量为0.98±0.02,并且能够在柔性基板上的厘米级区域轻松形成。LCN的图案化使得裂纹能够转弯、沿方位角螺旋或从一点辐射。导电墨水可以填充到这些定向裂纹中,从而形成柔性、各向异性且透明的导体。这种基于材料的裂纹图案化加工方法能够在无需昂贵光刻方法的情况下,对裂纹的取向、长度、宽度和深度实现前所未有的控制。这种方法有望为具有微纳尺度特征的电子、传感器、流体、光学及其他器件带来新的架构。