Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
Nanophotonics Research Center, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
ACS Sens. 2021 May 28;6(5):1840-1848. doi: 10.1021/acssensors.1c00029. Epub 2021 Apr 16.
For biomedical photoacoustic applications, an ongoing challenge in simultaneous volumetric imaging and spectroscopic analysis arises from ultrasonic detectors lacking high sensitivity to pressure transients over a broad spectral bandwidth. Photoacoustic impulses can be measured on the basis of the ultrafast temporal dynamics and highly sensitive response of surface plasmon polaritons to the refractive index changes. Taking advantage of the ultra-sensitive phase shift of surface plasmons caused by ultrasonic perturbations instead of the reflectivity change [as is the case for traditional surface plasmon resonance (SPR) sensors], a novel SPR sensor based on phase-shifted interrogation was developed for the broadband measurement of photoacoustically induced pressure transients with improved detection sensitivity. Specifically, by encoding the acoustically modulated phase change into time-varying interference intensity, our sensor achieved an almost five-fold sensitivity enhancement (∼98 Pa noise-equivalent pressure) compared with the reflectivity-mode SPR sensing technologies (∼470 Pa) while retaining a broadband acoustic response of ∼174 MHz. Incorporating our sensor into an optical-resolution photoacoustic microscope, we performed label-free imaging of a zebrafish eye , enabling simultaneous volumetric visualization and spectrally resolved discrimination of anatomical features. This novel sensing technology has potential for advancing biomedical ultrasonic and/or photoacoustic investigations.
对于生物医学光声应用,在同时进行体积成像和光谱分析时,一个持续存在的挑战源于超声探测器在宽光谱带宽内对压力瞬态缺乏高灵敏度。光声脉冲可以根据表面等离子体激元的超快时间动态和对折射率变化的高度敏感响应来测量。利用表面等离子体激元的超灵敏相移来测量超声扰动引起的压力瞬变,而不是传统表面等离子体共振(SPR)传感器的反射率变化,我们开发了一种基于相移检测的新型 SPR 传感器,用于宽带测量光声诱导的压力瞬变,提高了检测灵敏度。具体来说,通过将声调制的相位变化编码为时变干涉强度,我们的传感器与反射率模式 SPR 传感技术(约 470 Pa)相比,灵敏度提高了近五倍(约 98 Pa 噪声等效压力),同时保持了约 174 MHz 的宽带声响应。将我们的传感器集成到光学分辨率光声显微镜中,我们对斑马鱼眼睛进行了无标记成像,实现了体积可视化和解剖特征的光谱分辨区分。这项新型传感技术有望推动生物医学超声和/或光声研究。