Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China.
Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China.
Nitric Oxide. 2021 Sep 1;113-114:1-6. doi: 10.1016/j.niox.2021.04.004. Epub 2021 Apr 20.
Relatively high concentration of nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) in response to a variety of stimuli is a source of reactive nitrogen species, an important weapon of host innate immune defense. The SPRY domain-containing SOCS box protein 2 (SPSB2) is an E3 ubiquitin ligase that regulates the lifetime of iNOS. SPSB2 interacts with the N-terminal region of iNOS via a binding site on the SPRY domain of SPSB2, and recruits an E3 ubiquitin ligase complex to polyubiquitinate iNOS, leading to its proteasomal degradation. Although critical residues for the SPSB2-iNOS interaction have been identified, structural basis for the interaction remains to be explicitly determined. In this study, we have determined a crystal structure of the N-terminal region of iNOS in complex with the SPRY domain of SPSB2 at 1.24 Å resolution. We have resolved the roles of some flanking residues, whose contribution to the SPSB2-iNOS interaction was structurally unclear previously. Furthermore, we have evaluated the effects of SPSB2 inhibitors on NO production using transient transfection and cell-penetrating peptide approaches, and found that such inhibitors can elevate NO production in RAW264.7 macrophages. These results thus provide a useful basis for the development of potent SPSB2 inhibitors as well as recruiting ligands for proteolysis targeting chimera (PROTAC) design.
诱导型一氧化氮合酶(iNOS)产生的相对高浓度的一氧化氮(NO)作为活性氮物种的来源,是宿主固有免疫防御的重要武器。含有 SPRY 结构域的 SOCS 盒蛋白 2(SPSB2)是一种 E3 泛素连接酶,可调节 iNOS 的寿命。SPSB2 通过 SPSB2 的 SPRY 结构域上的结合位点与 iNOS 的 N 端区域相互作用,并募集 E3 泛素连接酶复合物对 iNOS 进行多泛素化,导致其蛋白酶体降解。虽然已经确定了 SPSB2-iNOS 相互作用的关键残基,但相互作用的结构基础仍有待明确确定。在这项研究中,我们以 1.24Å 的分辨率确定了 iNOS 的 N 端区域与 SPSB2 的 SPRY 结构域复合物的晶体结构。我们解析了一些侧翼残基的作用,这些残基以前在结构上对 SPSB2-iNOS 相互作用的贡献不清楚。此外,我们使用瞬时转染和穿透肽方法评估了 SPSB2 抑制剂对 NO 产生的影响,发现这些抑制剂可以增加 RAW264.7 巨噬细胞中的 NO 产生。这些结果为开发有效的 SPSB2 抑制剂以及招募蛋白酶体靶向嵌合体(PROTAC)设计的配体提供了有用的基础。