Suppr超能文献

环氧基水凝胶与水的相互作用:分子动力学模拟研究。

Interaction of epoxy-based hydrogels and water: A molecular dynamics simulation study.

机构信息

Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA.

Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; CompNano Group, School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuqui, 10019, Ecuador.

出版信息

J Mol Graph Model. 2021 Jul;106:107915. doi: 10.1016/j.jmgm.2021.107915. Epub 2021 Apr 5.

Abstract

Biomaterials play a crucial role in tissue engineering as a functional replacement, regenerative medicines, supportive scaffold for guided tissue growth, and drug delivery devices. The term biomaterial refers to metals, ceramics, and polymers account for the vast majority. In the case of polymers, hydrogels have emerged as active materials for an immense variety of applications. Epoxy-based hydrogels possess a unique network structure that enables very high levels of hydrophilicity and biocompatibility. Hydrogel such as Medipacs Epoxy Polymers (MEPs) models were constructed to understand water's behavior at the water/hydrogel interface and hydrogel network. We computed the Gibbs dividing surface (GDS) to define the MEP/water interface, and all the physicochemical properties were computed based on GDS. We calculated the radial distribution function (RDF), the 2D surface roughness of the immersed MEPs. RDF analysis confirmed that the first hydration shell is at a distance of 1.86 Å, and most of the water molecules are near the hydroxyl group of the MEPs network. Hydrogen bonds (H-bonds) analysis was performed, and the observation suggested that the disruption of the H-bonds between MEP chains leads to an increase in the polymer matrix's void spaces. These void spaces are filled with diffused water molecules, leading to swelling of the MEP hydrogel. The swelling parameter was estimated from the fitted curve of the yz-lattice of the simulation cell. The MEP/water interface simulation results provide insightful information regarding the design strategy of epoxy-based hydrogel and other hydrogels vital for biomedical applications.

摘要

生物材料在组织工程中起着至关重要的作用,可作为功能替代物、再生医学、引导组织生长的支持性支架以及药物输送装置。生物材料一词是指金属、陶瓷和聚合物,它们占绝大多数。在聚合物的情况下,水凝胶已成为各种应用的活性材料。基于环氧的水凝胶具有独特的网络结构,可实现非常高的亲水性和生物相容性。为了了解水在水/水凝胶界面和水凝胶网络中的行为,构建了 Medipacs 环氧聚合物 (MEP) 模型。我们计算了 Gibbs 分割面 (GDS) 来定义 MEP/水界面,并且所有的物理化学性质都是基于 GDS 计算的。我们计算了径向分布函数 (RDF) 和浸入 MEPs 的二维表面粗糙度。RDF 分析证实,第一个水合壳层的距离为 1.86 Å,并且大多数水分子靠近 MEPs 网络的羟基。进行了氢键 (H-bond) 分析,观察结果表明,MEP 链之间氢键的破坏会导致聚合物基质的空隙空间增加。这些空隙空间被扩散的水分子填充,导致 MEPs 水凝胶溶胀。通过模拟单元的 yz 晶格拟合曲线来估算溶胀参数。MEP/水界面的模拟结果为基于环氧的水凝胶和其他对生物医学应用至关重要的水凝胶的设计策略提供了有见地的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验