Suppr超能文献

无序三元互动下的海德平衡

Heider balance under disordered triadic interactions.

作者信息

Bagherikalhor M, Kargaran A, Shirazi A H, Jafari G R

机构信息

Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran.

Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin, Tehran, 19839, Iran.

出版信息

Phys Rev E. 2021 Mar;103(3-1):032305. doi: 10.1103/PhysRevE.103.032305.

Abstract

The Heider balance addresses three-body interactions with the assumption that triads are equally important in the dynamics of the network. In many networks, the relations do not have the same strength, so triads are differently weighted. Now, the question is how social networks evolve to reduce the number of unbalanced triangles when they are weighted? Are the results foreseeable based on what we have already learned from the unweighted balance? To find the solution, we consider a fully connected network in which triads are assigned with different random weights. Weights are coming from Gaussian probability distribution with mean μ and variance σ. We study this system in two regimes: (I) the ratio of μ/σ≥1 corresponds to weak disorder (small variance) that triads' weight are approximately the same; (II) μ/σ<1 counts for strong disorder (big variance) and weights are remarkably diverse. Investigating the structural evolution of such a network is our intention. We see disorder plays a key role in determining the critical temperature of the system. Using the mean-field method to present an analytic solution for the system represents that the system undergoes a first-order phase transition. For weak disorder, our simulation results display the system reaches the global minimum as temperature decreases, whereas for the second regime, due to the diversity of weights, the system does not manage to reach the global minimum.

摘要

海德平衡理论在假设三元组在网络动态中同等重要的前提下,探讨三体相互作用。在许多网络中,关系的强度并不相同,因此三元组的权重也有所不同。现在的问题是,加权后的社交网络如何演化以减少不平衡三角形的数量?基于我们从未加权平衡中学到的知识,结果是否可预测?为了找到解决方案,我们考虑一个完全连通的网络,其中三元组被赋予不同的随机权重。权重来自均值为μ、方差为σ的高斯概率分布。我们在两种情况下研究这个系统:(I)μ/σ≥1对应弱无序(小方差),此时三元组的权重大致相同;(II)μ/σ<1表示强无序(大方差),权重差异显著。我们旨在研究这样一个网络的结构演化。我们发现无序在确定系统的临界温度方面起着关键作用。用平均场方法给出系统的解析解表明该系统经历一阶相变。对于弱无序,我们的模拟结果显示,随着温度降低,系统达到全局最小值;而对于第二种情况,由于权重的多样性,系统无法达到全局最小值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验