Suppr超能文献

用于多相流的罗斯曼-凯勒颜色梯度格子玻尔兹曼方法中的最优表面张力各向同性

Optimal surface-tension isotropy in the Rothman-Keller color-gradient lattice Boltzmann method for multiphase flow.

作者信息

Mora Peter, Morra Gabriele, Yuen David A

机构信息

College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

Department of Physics and School of Geosciences, University of Louisiana at Lafayette, Lafayette, Louisiana 70503, USA.

出版信息

Phys Rev E. 2021 Mar;103(3-1):033302. doi: 10.1103/PhysRevE.103.033302.

Abstract

The Rothman-Keller color-gradient (CG) lattice Boltzmann method is a popular method to simulate two-phase flow because of its ability to deal with fluids with large viscosity contrasts and a wide range of interfacial tensions. Two fluids are labeled red and blue, and the gradient in the color difference is used to compute the effect of interfacial tension. It is well known that finite-difference errors in the color-gradient calculation lead to anisotropy of interfacial tension and errors such as spurious currents. Here, we investigate the accuracy of the CG calculation for interfaces between fluids with several radii of curvature and find that the standard CG calculations lead to significant inaccuracy. Specifically, we observe significant anisotropy of the color gradient of order 7% for high curvature of an interface such as when a pinchout occurs. We derive a second order accurate color gradient and find that the diagonal nearest neighbors can be weighted differently than in the usual color-gradient calculation such that anisotropy is minimized to a fraction of a percent. The optimal weights that minimize anisotropy for the smallest radius of curvature interface are found to be w=(0.298,0.284,0.275) for diagonal nearest neighbors for the cases of the interface smoothing parameter β=(0.5,0.7,0.99), somewhat higher than the w=0.25 value derived by Leclaire et al. [Leclaire, Reggio, and Trepanier, Computers and Fluids 48, 98 (2011)CPFLBI0045-793010.1016/j.compfluid.2011.04.001] based on obtaining isotropic errors to second order. We find that use of these optimal w values yields over a factor of 10 decrease in anisotropy and over a factor of 30 decrease in mean anisotropy relative to using the standard w=1 value. And we find a factor of about 2 decrease in the anisotropic error and up to factor 15 decrease in mean anisotropic error relative to the choice of w=0.25 for small radius of curvature interfaces. The improved CG calculations will allow the method to be more reliably applied to studies of phenomenology and pore scale processes such as viscous and capillary fingering, and droplet formation where surface-tension isotropy of narrow fingers and small droplets plays a crucial role in correctly capturing phenomenology. We present an example illustrating how different phenomena can be captured using the improved color-gradient method. Namely, we present simulations of a wetting fluid invading a fluid filled pipe where the viscosity ratio of fluids is unity in which droplets form at the transition to fingering using the improved CG calculations that are not captured using the standard CG calculations. We present an explanation of why this is so which relates to anisotropy of the surface tension, which inhibits the pinchouts needed to form droplets.

摘要

罗斯曼 - 凯勒颜色梯度(CG)格子玻尔兹曼方法是一种用于模拟两相流的常用方法,因为它能够处理具有大粘度对比和广泛界面张力范围的流体。两种流体分别标记为红色和蓝色,利用颜色差异的梯度来计算界面张力的影响。众所周知,颜色梯度计算中的有限差分误差会导致界面张力的各向异性以及诸如虚假电流等误差。在此,我们研究了几种曲率半径的流体之间界面的CG计算精度,发现标准的CG计算会导致显著的不准确性。具体而言,我们观察到对于高曲率界面(例如发生缩颈时),颜色梯度存在约7%的显著各向异性。我们推导了二阶精确的颜色梯度,发现与通常的颜色梯度计算相比,对角最近邻可以采用不同的加权方式,从而将各向异性最小化到百分之几。对于最小曲率半径界面,使各向异性最小化的最优权重在界面平滑参数β = (0.5, 0.7, 0.99)的情况下,对角最近邻的权重为w = (0.298, 0.284, 0.275),略高于勒克莱尔等人[勒克莱尔、雷焦和特雷帕尼尔,《计算机与流体》48, 98 (2011)CPFLBI0045 - 793010.1016/j.compfluid.2011.04.001]基于获得二阶各向同性误差推导的w = 0.25值。我们发现,相对于使用标准的w = 1值,使用这些最优w值可使各向异性降低超过10倍,平均各向异性降低超过30倍。并且我们发现,相对于曲率半径较小的界面选择w = 0.25,各向异性误差降低约2倍,平均各向异性误差降低高达15倍。改进后的CG计算将使该方法能够更可靠地应用于现象学和孔隙尺度过程的研究,如粘性指进和毛细指进以及液滴形成,其中窄指状物和小液滴的表面张力各向同性在正确捕捉现象学方面起着关键作用。我们给出一个示例,说明如何使用改进后的颜色梯度方法捕捉不同现象。具体而言,我们展示了一种润湿流体侵入充满流体的管道的模拟,其中流体的粘度比为1,在使用改进的CG计算时,在向指进转变处形成液滴,而使用标准CG计算则无法捕捉到这些液滴。我们解释了为何会出现这种情况,这与表面张力的各向异性有关,它抑制了形成液滴所需的缩颈。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验