Suppr超能文献

拟南芥中的生物钟。

Biological clocks in Arabidopsis thaliana.

作者信息

Millar Andrew J

机构信息

1 Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK (tel +44 1203 524 592; fax +44 1203 523 701; e-mail

出版信息

New Phytol. 1999 Feb;141(2):175-197. doi: 10.1046/j.1469-8137.1999.00349.x.

Abstract

Biological rhythms are ubiquitous in eukaryotes, and the best understood of these occur with a period of approximately a day - circadian rhythms. Such rhythms persist even when the organism is placed under constant conditions, with a period that is close, but not exactly equal, to 24 h, and are driven by an endogenous timer - one of the many 'biological clocks'. In plants, research into circadian rhythms has been driven forward by genetic experiments using Arabidopsis. Higher plant genomes include a particularly large number of genes involved in metabolism, and circadian rhythms may well provide the necessary coordination for the control of these - for example, around the diurnal rhythm of photosynthesis - to suit changing developmental or environmental conditions. The endogenous timer must be flexible enough to support these requirements. Current research supports this notion most strongly for the input pathway, in which multiple photoreceptors have been shown to mediate light input to the clock. Both input and output components are now related to putative circadian oscillator mechanisms by sequence homology or by experimental observation. It appears that the pathways linking some domains of the basic clock model may be very short indeed, or the mechanisms of these domains may overlap. Components of the first plant circadian output pathway to be identified unequivocally will help to determine exactly how many output pathways control the various phases of overt rhythms in plants. contents Summary 175 I. the circadian system 176 II. overt circadian rhythms 177 III. photoperiodism 183 IV. oscillator theory and practice 186 V. phototransduction pathways 190 VI. conclusions 192 Acknowledgements 193 References 193.

摘要

生物节律在真核生物中普遍存在,其中研究最为透彻的是以大约一天为周期的节律——昼夜节律。即使将生物体置于恒定条件下,这种节律依然存在,其周期接近但并不恰好等于24小时,并且由一个内源性定时器驱动——这是众多“生物钟”之一。在植物中,利用拟南芥进行的遗传学实验推动了对昼夜节律的研究。高等植物基因组包含大量参与新陈代谢的基因,昼夜节律很可能为这些基因的调控提供必要的协调——例如,围绕光合作用的昼夜节律——以适应不断变化的发育或环境条件。内源性定时器必须足够灵活以满足这些需求。目前的研究最有力地支持了这一观点,即在输入途径中,已证明多种光感受器介导光输入到生物钟。现在,输入和输出组件都通过序列同源性或实验观察与假定的昼夜节律振荡器机制相关联。看来,连接基本生物钟模型某些域的途径可能确实非常短,或者这些域的机制可能重叠。第一个被明确鉴定的植物昼夜节律输出途径的组件将有助于确切确定有多少输出途径控制植物中明显节律的各个阶段。内容摘要175 一、昼夜节律系统176 二、明显的昼夜节律177 三、光周期现象183 四、振荡器理论与实践186 五、光转导途径190 六、结论192 致谢193 参考文献193 。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验