Vanden Driessche Thérèse, Vries Ghislaine M Petiau-DE, Guisset Jean-Luc
Université Libre de Bruxelles, Department of Molecular Biology, Avenue des Ortolans 46, B-1170 Brussels, Belgium.
Université Libre de Bruxelles, Faculté de Médecine, Chimie générate I, CP 609, Route de Lennik 808, B-1070 Brussels, Belgium.
New Phytol. 1997 Jan;135(1):1-20. doi: 10.1046/j.1469-8137.1997.00575.x.
The aim of this paper is to review the present knowledge of the main aspects of differentiation of Acetabularia, a unicellular, eukaryotic organism, and to underline the multiple control pathways modulated by circadian rhythmicity. Growth and morphogenesis are sequentially programmed. Timing of cap differentiation is highly dependent on external conditions. The importance of the sequence of processes is shown by experimental disregulation. The alga is a highly polarized cell, both in morphology and in the relative concentrations of a number of the molecules it contains. Apical cap differentiation is regulated at the post-transcriptional level and could also depend in part on polyamines and on proteolytic activity. Acetabularia displays a number of circadian rhythms (CR). These rhythms form an elaborate biological time structure (also called temporal morphology, or morphology in time as opposed to morphology in space): the distribution in the 24 h cycle of the peaks and troughs of the oscillating functions. The oscillations display fixed relations both with the other functions and with external conditions (such as the transition from dark to light). Interestingly, the CR modulate Acetabularia's development, which is influenced by photoperiod; we present preliminary experiments suggesting that disruption of temporal morphology is deleterious to morphogenesis. Induction of growth and of morphogenesis are totally dependent on blue light. However, blue light receptors in plants arc probably multiple, but we present arguments suggesting that flavin-cytochrome b and the associated KHAM-sensitive molecule are present in Acetabularia plasma membrane and are involved in blue light perception. Agents interfering with different steps of signal perception and transduction show that at least some of these steps are temporally regulated. According to recent experiments from our laboratory, the existence of a redox signalling mechanism appears to be highly probable. The phytohormones (or plant regulators), auxin (indole acetic acid), abscisic acid and ethylene, exert cell-regulatory functions and are involved in Acetabularia differentiation. They also modulate at least some circadian rhythms. Finally, circadian rhythms intervene in differentiation and are proposed to have an integrative function. CONTENTS Summary 1 I. Introduction: the cell cycle and morphology of Acetabularia 2 II. Growth and cap morphogenesis: the developmental programme 3 III. Polarity 5 IV. Temporal morphology 6 V. Induction of growth and cap morphogenesis 9 VI. The plasma membrane 12 VII. Hormones: development and metabolic activity in Acetabularia 12 VIII. Phytohormones receptors and insulin receptors 15 IX. Other possible hormones 16 X. Fundamental role of CR: their intervention in modulating multiple steps in differentiation 16 XI. Conclusions and perspectives 17 Acknowledgements 17 References 17.
本文旨在综述关于伞藻(一种单细胞真核生物)分化主要方面的现有知识,并强调由昼夜节律调节的多种控制途径。生长和形态发生是按顺序编程的。帽状体分化的时间高度依赖于外部条件。实验性失调表明了过程顺序的重要性。这种藻类在形态以及其所含多种分子的相对浓度方面都是高度极化的细胞。顶端帽状体分化在转录后水平受到调节,并且也可能部分依赖于多胺和蛋白水解活性。伞藻表现出多种昼夜节律(CR)。这些节律形成了一个复杂的生物时间结构(也称为时间形态学,或与空间形态学相对的时间中的形态学):振荡函数的峰值和谷值在24小时周期内的分布。这些振荡与其他功能以及外部条件(如从黑暗到光照的转变)都呈现出固定的关系。有趣的是,昼夜节律调节伞藻的发育,而发育受光周期影响;我们展示的初步实验表明时间形态学的破坏对形态发生是有害的。生长和形态发生的诱导完全依赖于蓝光。然而,植物中的蓝光受体可能是多样的,但我们提出的论据表明黄素 - 细胞色素b以及相关的KHAM敏感分子存在于伞藻的质膜中,并参与蓝光感知。干扰信号感知和转导不同步骤的试剂表明,这些步骤中的至少一些是受时间调节的。根据我们实验室最近的实验,氧化还原信号传导机制的存在似乎极有可能。植物激素(或植物调节剂),生长素(吲哚乙酸)、脱落酸和乙烯,发挥细胞调节功能并参与伞藻的分化。它们还调节至少一些昼夜节律。最后,昼夜节律干预分化,并被认为具有整合功能。目录摘要1 一、引言:伞藻的细胞周期和形态2 二、生长和帽状体形态发生:发育程序3 三、极性5 四、时间形态学6 五、生长和帽状体形态发生的诱导9 六、质膜12 七、激素:伞藻中的发育和代谢活性12 八、植物激素受体和胰岛素受体15 九、其他可能的激素16 十、昼夜节律的基本作用:它们在调节分化多个步骤中的干预16 十一、结论与展望17 致谢17 参考文献17