EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France.
Information Processing and Systems Department, ONERA, Salon-de-Provence, France.
Ergonomics. 2021 Oct;64(10):1297-1309. doi: 10.1080/00140139.2021.1914352. Epub 2021 Apr 30.
Low-Altitude Flight (LAF) is a flight formation consisting of rapid close ground flight. Perception and control of self-motion, allowing for optimal information collection and rapid adaptation, are of fundamental importance during LAF, but remain largely unexplored. This study aimed to analyse the impact of visuo-vestibular stimuli on the monitoring of height in a motion-based simulated LAF context. Thirteen non-pilots were tested in different environmental conditions, in which optical and gravito-inertial (GI) information were manipulated. The visual environment, displayed with a VR headset, was a low-textured landscape with identical and equally spaced trees throughout the trials. The GI environment was designed thanks to a motion-based simulator. Results showed that participants had better performances in a visuo-vestibular environment than in a visual-only setting, indicating that multi-sensory information was picked-up faster than a mono-sensory structure. Additionally, we found differences in the contribution of vestibular inputs depending on the kind of task. Low-Altitude-Flight (LAF) manoeuvres require delicate aircraft control. Two experiments using a large flight simulator investigated how visual and vestibular stimulation contribute to LAF perception and control. Results suggest that both sources of stimulation need to be combined for accurate performance, with consequences for simulator-based training scenarios. LAF: low altitude flight; GI: gravito-inertial; 1/2/3D: 1/2/3 dimensions; VR: virtual reality; Mvt: movement; GVE: good visual environment; DVE: degraded visual environment; SSQ: simulator motion sickness questionnary; RT: reaction time; DIMSS: dynamic interface modelling and simulation system metric; corrAcf: maximum correlation coefficient; corrLag: maximum correlation lag; DFT: deviation from target; StdJ: standard deviation of the joytick value; NCR: number of control reversal.
低空飞行(LAF)是一种由快速近距离地面飞行组成的飞行编队。在 LAF 过程中,自我运动的感知和控制对于最优信息收集和快速适应至关重要,但目前仍在很大程度上未被探索。本研究旨在分析视动刺激对基于运动模拟 LAF 环境中高度监测的影响。13 名非飞行员在不同的环境条件下进行了测试,其中光学和重感(GI)信息被操纵。视觉环境通过 VR 耳机显示,是一个低纹理的景观,整个试验中树木相同且间距相等。GI 环境是通过基于运动的模拟器设计的。结果表明,参与者在视动环境中的表现优于仅视觉环境,表明多感觉信息比单感觉结构更快地被接收。此外,我们发现前庭输入的贡献因任务类型而异。 低空飞行(LAF)机动需要精细的飞机控制。使用大型飞行模拟器进行的两项实验研究了视觉和前庭刺激如何有助于 LAF 的感知和控制。结果表明,为了实现准确的性能,需要结合两种刺激源,这对基于模拟器的训练场景有影响。 LAF:低空飞行;GI:重感;1/2/3D:1/2/3 维;VR:虚拟现实;Mvt:运动;GVE:良好的视觉环境;DVE:退化的视觉环境;SSQ:模拟器晕动病问卷;RT:反应时间;DIMSS:动态接口建模和仿真系统度量;corrAcf:最大相关系数;corrLag:最大相关滞后;DFT:偏离目标;StdJ:操纵杆值的标准偏差;NCR:控制反转次数。