Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA.
Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
Genome Res. 2021 May;31(5):799-810. doi: 10.1101/gr.270033.120. Epub 2021 Apr 16.
The members of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report a new genome sequence of , a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, inferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a "mix and match" model of allopolyploidy, in which subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.
Brassiceae 部落的成员共享全基因组三倍体(WGT),其形成的一个提议模型是产生六倍体后代的两步杂交对。然而,该模型的证据并不完整,并且在六倍体之后驱动进化的进化和功能限制甚至了解得更少。在这里,我们报告了 Brassiceae 中大多数已测序物种的姐妹种 的新基因组序列。使用这个新基因组和另外三个共享六倍体的基因组,我们使用多倍体同源性推断工具(POInT)追踪了 WGT 后基因丢失的历史。我们确认了两步形成模型,并推断出这两个异源六倍体之间存在着显著的时间间隔,大约三分之一的基因丢失发生在第三个到来之前的前两个亚基因组中。我们还对我们研究中的 90,000 个个体基因进行了亲本亚基因组分配,从异源六倍体的祖基因组中推断出每个基因的来源,测量了不确定性。我们进一步表明,每个亚基因组都有一个可区分的同源基因丢失率。三个亚基因组之间几乎没有功能上的区别:个体亚基因组没有表现出功能富集的模式,它们之间成员之间没有多余的共享蛋白质-蛋白质或代谢相互作用,也没有它们经历最近选择清除的可能性的偏见。我们提出了一个“混合和匹配”的异源多倍体模型,其中亚基因组起源驱动同源基因丢失倾向,但来自不同亚基因组的基因可以一起正常发挥功能,而不会有任何困难。