Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
J Contam Hydrol. 2021 Aug;241:103809. doi: 10.1016/j.jconhyd.2021.103809. Epub 2021 Apr 7.
High-resolution characterization of complex dense non-aqueous phase liquid (DNAPL) contaminated sites is crucial for developing effective remediation strategies. The DNAPL source zone is usually characterized by hydraulic/partitioning tracer tomography (HPTT). However, the HPTT method may fail to capture the highly saturated pool-dominated DNAPL source zone architecture (SZA), because partitioning tracers tend to bypass the low-permeability zones where the pool DNAPL accumulates, resulting in a low-resolution DNAPL estimation. With a limited number of measurements, the estimation errors may be significant. To overcome these difficulties, time-lapse electrical resistivity tomography (ERT) was integrated with the partitioning interwell tracer test (PITT) and hydraulic tomography (HT) to characterize the pool-dominated DNAPL SZA. Herein, we proposed an iterative joint inversion framework coupling the multiphase flow model with the ERT forward model to estimate the heterogeneous permeability distribution and DNAPL SZA. Under this framework, permeability was estimated using the hydraulic head data from HT in stage 1, and the DNAPL SZA was subsequently estimated by assimilating both the PITT and ERT observations in stage 2. The permeability estimated from stage 1 was used as prior information for stage 2, and the DNAPL saturation estimated from stage 2 was served as prior information for stage 1 in the next loop to form an iterative loop to improve the estimation of both permeability and DNAPL SZA. The iterative joint inversion framework was evaluated in two numerical experiments with different heterogeneous structures by assimilating multi-source datasets, including hydraulic head, partitioning interwell tracer concentration, and electrical resistivity. Results show that with limited measurements of HPTT method, one can roughly capture the DNAPL distribution, missing the fine structure of the DNAPL SZA. In contrast, by incorporating multi-source datasets, the heterogeneous permeability and DNAPL SZA can be reconstructed with a higher resolution. Furthermore, the inversion accuracy of the DNAPL SZA improves progressively as the iteration proceeds, which demonstrates the advantage of utilizing complementary information from permeability and DNAPL distribution through the iteration framework. Comparing with the results without loop iteration, the estimation error is reduced by 17.3% for permeability and 8.6% for DNAPL saturation in Experiment 1; by 14.7% for permeability and 11.2% for DNAPL saturation in Experiment 2 through the iterative framework. To further evaluate our framework, we preformed the prediction of the depletion process of the DNAPL source zone and plume based on the estimated DNAPL SZA. Results show that using the iterative framework, the prediction of the SZA depletion is greatly improved, i.e., the estimation error of the dissolved downstream plume from the DNAPL source zone after 3 years is reduced by 20.9% in Experiment 1, and by 43.2% in Experiment 2, respectively, through the iterative framework. This significant improvement is because the iterative method can better capture the spread of DNAPL pool.
高分辨率刻画复杂的致密非水相液体(DNAPL)污染场地对于开发有效的修复策略至关重要。DNAPL 源区通常采用水力/分配示踪剂层析成像(HPTT)进行表征。然而,HPTT 方法可能无法捕捉到高度饱和的池型主导的 DNAPL 源区结构(SZA),因为分配示踪剂往往会绕过低渗透区,而池型 DNAPL 会在这些低渗透区积累,导致对 DNAPL 的低分辨率估计。在有限的测量次数下,估计误差可能会很大。为了克服这些困难,时移电阻率层析成像(ERT)与分配井间示踪剂测试(PITT)和水力层析成像(HT)相结合,对池型主导的 DNAPL SZA 进行了表征。在此基础上,提出了一种迭代联合反演框架,将多相流模型与 ERT 正演模型耦合,以估计非均质渗透率分布和 DNAPL SZA。在该框架中,渗透率是在阶段 1 中利用 HT 的水力头数据进行估计的,随后在阶段 2 中通过同化 PITT 和 ERT 观测值来估计 DNAPL SZA。在阶段 1 中估计的渗透率被用作阶段 2 的先验信息,在阶段 2 中估计的 DNAPL 饱和度被用作下一个循环的阶段 1 的先验信息,形成一个迭代循环,以提高渗透率和 DNAPL SZA 的估计精度。通过同化多源数据集,包括水力头、分配井间示踪剂浓度和电阻率,在两个具有不同非均质性结构的数值实验中评估了迭代联合反演框架。结果表明,在 HPTT 方法的有限测量次数下,大致可以捕捉到 DNAPL 的分布,而 DNAPL SZA 的精细结构则被忽略。相比之下,通过整合多源数据集,可以以更高的分辨率重建非均质渗透率和 DNAPL SZA。此外,随着迭代的进行,DNAPL SZA 的反演精度逐渐提高,这证明了通过迭代框架利用渗透率和 DNAPL 分布互补信息的优势。与没有循环迭代的结果相比,在实验 1 中,渗透率的估计误差减少了 17.3%,DNAPL 饱和度的估计误差减少了 8.6%;在实验 2 中,渗透率的估计误差减少了 14.7%,DNAPL 饱和度的估计误差减少了 11.2%。为了进一步评估我们的框架,我们基于估计的 DNAPL SZA 对 DNAPL 源区和羽流的消耗过程进行了预测。结果表明,使用迭代框架可以大大提高 SZA 消耗的预测精度,即通过迭代框架,实验 1 中 DNAPL 源区下游溶解羽流的估计误差在 3 年后降低了 20.9%,实验 2 中降低了 43.2%。这一显著改善是因为迭代方法可以更好地捕捉到池型 DNAPL 的扩散。