Suppr超能文献

使用简短数字干预改变患者和公众对抗微生物药物及抗菌药物耐药性(AMR)的看法

Changing Patient and Public Beliefs About Antimicrobials and Antimicrobial Resistance (AMR) Using a Brief Digital Intervention.

作者信息

Chan Amy Hai Yan, Horne Rob, Lycett Helen, Raebel Eva, Guitart Jordi, Wildman Emilie, Ang Karen

机构信息

Centre of Behavioural Medicine, School of Pharmacy, UCL, London, United Kingdom.

School of Pharmacy, University of Auckland, Auckland, New Zealand.

出版信息

Front Pharmacol. 2021 Mar 31;12:608971. doi: 10.3389/fphar.2021.608971. eCollection 2021.

Abstract

A key driver of antimicrobial resistance (AMR) is patient demand for unnecessary antibiotics, which is driven by patients' beliefs about antibiotics and AMR. Few interventions have targeted beliefs to reduce inappropriate demand. To examine whether a brief, online algorithm-based intervention can change beliefs that may lead to inappropriate antibiotic demand (i.e. perceptions of antibiotic necessity and lack of concern about antibiotic harm). Pre- and post-intervention study. Participants were 18 years or older, and residing in the United Kingdom, who self-selected to participate via Amazon mTurk, an online survey plaform, and via research networks. Participants were presented with a hypothetical situation of cold and flu symptoms, then exposed to the intervention. The online intervention comprised: 1) a profiling tool identifying individual beliefs (antibiotic necessity, concerns, and knowledge) driving inappropriate antibiotic demand; 2) messages designed to change beliefs and knowledge (i.e. reduce antibiotic necessity, and increase antibiotic concerns and knowledge), and 3) an algorithm linking specific messages to specific beliefs and knowledge. The profiling tool was repeated immediately after the intervention and compared with baseline scores to assess change in beliefs. A paired samples -test was used to determine intervention effect. A total of 100 respondents completed the study. A significant change in beliefs relating to inappropriate demand was observed after the intervention, with a reduction in beliefs about antibiotic necessity (t = 7.254; < 0.0001), an increase in antibiotic concerns (t = -7.214; < 0.0001), and increases in antibiotic and AMR knowledge (t = -4.651; < 0.0001). This study is the first to demonstrate that patient beliefs about antibiotics and AMR associated with inappropriate demand can be changed by a brief, tailored online intervention. This has implications for the design of future interventions to reduce unnecessary antimicrobial use.

摘要

抗菌药物耐药性(AMR)的一个关键驱动因素是患者对不必要抗生素的需求,而这种需求是由患者对抗生素和AMR的认知所驱动的。很少有干预措施针对这些认知来减少不适当的需求。为了检验一种基于在线算法的简短干预措施是否能够改变可能导致不适当抗生素需求的认知(即对抗生素必要性的认知以及对抗生素危害缺乏关注)。进行干预前和干预后的研究。参与者年龄在18岁及以上,居住在英国,他们通过在线调查平台亚马逊土耳其机器人(Amazon mTurk)以及研究网络自行选择参与。参与者面对一个感冒和流感症状的假设情景,然后接受干预。在线干预包括:1)一个剖析工具,用于识别导致不适当抗生素需求的个人认知(抗生素必要性、关注点和知识);2)旨在改变认知和知识的信息(即减少抗生素必要性,并增加对抗生素的关注和知识),以及3)一种将特定信息与特定认知和知识相联系的算法。干预结束后立即再次使用剖析工具,并与基线分数进行比较,以评估认知的变化。采用配对样本t检验来确定干预效果。共有100名受访者完成了该研究。干预后观察到与不适当需求相关的认知有显著变化,对抗生素必要性的认知有所降低(t = 7.254;P < 0.0001),对抗生素的关注有所增加(t = -7.214;P < 0.0001),抗生素和AMR知识也有所增加(t = -4.651;P < 0.0001)。本研究首次表明,通过一种简短、量身定制的在线干预可以改变患者与不适当需求相关的对抗生素和AMR的认知。这对于未来减少不必要抗菌药物使用的干预措施设计具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3c0/8045782/bfd3ea9477be/fphar-12-608971-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验