Thomas J N, Ramaswamy V, Johnston T L, Belc D C, Freytag N, Hornak L A, Edison A S, Brey W W
National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, USA.
Bruker Biospin, Faellanden, Switzerland.
J Phys Conf Ser. 2020;1559. doi: 10.1088/1742-6596/1559/1/012022.
Nuclear magnetic resonance (NMR) probes using thin-film HTS coils offer high sensitivity and are particularly suitable for small-sample applications. Typically, HTS probes are optimized for the detection of multiple nuclei and require several coils to be located within a small volume near the sample. Coupling between the coils shifts coil resonances and complicates coil trimming when tuning HTS probes. We have modeled the magnetic coupling between the coils of a 1.5-mm all-HTS NMR probe with C, H, and H channels. By measuring the magnetic coupling coefficients between individual coils, we solve the general coupling matrix given by KVL for six coupled resonators. Our results indicate that required trims can be accurately predicted by applying single coil trimming simulations to this magnetic coupling model. Use of the magnetic coupling model significantly improves the efficiency of tuning HTS probes.
使用薄膜高温超导线圈的核磁共振(NMR)探头具有高灵敏度,特别适用于小样本应用。通常,高温超导探头针对多种原子核的检测进行了优化,并且需要几个线圈位于靠近样本的小体积内。在调谐高温超导探头时,线圈之间的耦合会使线圈共振发生偏移,并使线圈微调变得复杂。我们对具有碳、氢和质子通道的1.5毫米全高温超导NMR探头的线圈之间的磁耦合进行了建模。通过测量各个线圈之间的磁耦合系数,我们求解了由基尔霍夫电压定律(KVL)给出的六个耦合谐振器的一般耦合矩阵。我们的结果表明,通过将单线圈微调模拟应用于此磁耦合模型,可以准确预测所需的微调。磁耦合模型的使用显著提高了高温超导探头的调谐效率。