De Andrade Vincent, Nikitin Viktor, Wojcik Michael, Deriy Alex, Bean Sunil, Shu Deming, Mooney Tim, Peterson Kevin, Kc Prabhat, Li Kenan, Ali Sajid, Fezzaa Kamel, Gürsoy Doga, Arico Cassandra, Ouendi Saliha, Troadec David, Simon Patrice, De Carlo Francesco, Lethien Christophe
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA.
Applied Physics, Northwestern University, Evanston, IL, 60208, USA.
Adv Mater. 2021 May;33(21):e2008653. doi: 10.1002/adma.202008653. Epub 2021 Apr 19.
In the last decade, transmission X-ray microscopes (TXMs) have come into operation in most of the synchrotrons worldwide. They have proven to be outstanding tools for non-invasive ex and in situ 3D characterization of materials at the nanoscale across varying range of scientific applications. However, their spatial resolution has not improved in many years, while newly developed functional materials and microdevices with enhanced performances exhibit nanostructures always finer. Here, optomechanical breakthroughs leading to fast 3D tomographic acquisitions (85 min) with sub-10 nm spatial resolution, narrowing the gap between X-ray and electron microscopy, are reported. These new achievements are first validated with 3D characterizations of nanolithography objects corresponding to ultrahigh-aspect-ratio hard X-ray zone plates. Then, this powerful technique is used to investigate the morphology and conformality of nanometer-thick film electrodes synthesized by atomic layer deposition and magnetron sputtering deposition methods on 3D silicon scaffolds for electrochemical energy storage applications.
在过去十年中,透射X射线显微镜(TXM)已在全球大多数同步加速器中投入使用。事实证明,它们是用于在各种科学应用范围内对纳米级材料进行非侵入性体外和原位三维表征的出色工具。然而,它们的空间分辨率多年来一直没有提高,而新开发的具有增强性能的功能材料和微器件呈现出总是更精细的纳米结构。在此,报告了光机械方面的突破,实现了具有亚10纳米空间分辨率的快速三维断层扫描采集(85分钟),缩小了X射线显微镜和电子显微镜之间的差距。这些新成果首先通过对对应于超高纵横比硬X射线波带片的纳米光刻物体的三维表征得到验证。然后,这项强大的技术被用于研究通过原子层沉积和磁控溅射沉积方法在用于电化学储能应用的三维硅支架上合成的纳米厚膜电极的形态和保形性。