Suppr超能文献

使用平面内旋转样本的X射线显微镜图像进行多帧盲反卷积。

Multi-frame blind deconvolution using X-ray microscope images of an in-plane rotating sample.

作者信息

Kurimoto Shinnosuke, Inoue Takato, Aoto Hitoshi, Ito Toshiki, Ito Satsuki, Kohmura Yoshiki, Yabashi Makina, Matsuyama Satoshi

机构信息

Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan.

Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.

出版信息

Sci Rep. 2024 Nov 29;14(1):29726. doi: 10.1038/s41598-024-79237-x.

Abstract

We propose a multi-frame blind deconvolution method using an in-plane rotating sample optimized for X-ray microscopy, where the application of existing deconvolution methods is technically difficult. Untrained neural networks are employed as the reconstruction algorithm to enable robust reconstruction against stage motion errors caused by the in-plane rotation of samples. From demonstration experiments using full-field X-ray microscopy with advanced Kirkpatrick-Baez mirror optics at SPring-8, a spatial resolution of 34 nm (half period) was successfully achieved by removing the wavefront aberration and improving the apparent numerical aperture. This method can contribute to the cost-effective improvement of X-ray microscopes with imperfect lenses as well as the reconstruction of the phase information of samples and lenses.

摘要

我们提出了一种多帧盲反卷积方法,该方法使用了针对X射线显微镜优化的面内旋转样品,而现有反卷积方法在该应用中存在技术难题。采用未经训练的神经网络作为重建算法,以实现对样品面内旋转引起的平台运动误差的鲁棒重建。通过在SPring-8使用配备先进柯克帕特里克-贝兹镜光学系统的全场X射线显微镜进行的演示实验,通过消除波前像差和提高表观数值孔径,成功实现了34纳米(半周期)的空间分辨率。该方法有助于以经济高效的方式改进透镜不完善的X射线显微镜,以及重建样品和透镜的相位信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c462/11606970/abb110111646/41598_2024_79237_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验