Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
Pediatr Radiol. 2021 May;51(5):716-723. doi: 10.1007/s00247-020-04894-9. Epub 2021 Apr 19.
Magnetic resonance imaging (MRI) is a powerful diagnostic tool that can be optimized to display a wide range of clinical conditions. An MRI system consists of four major components: a main magnet formed by superconducting coils, gradient coils, radiofrequency (RF) coils, and computer systems. Each component has safety considerations. Unless carefully controlled, the MRI machine's strong static magnetic field could turn a ferromagnetic object into a harmful projectile or cause vertigo and headache. Switching magnetic fields in the gradients evokes loud noises in the scanner, which can be mitigated by ear protection. Gradients also generate varying magnetic fields that can cause peripheral nerve stimulation and muscle twitching. Magnetic fields produced by RF coils deposit energy in the body and can cause tissue heating (with the potential to cause skin burns). In this review, we provide an overview of the components of a typical clinical MRI scanner and its associated safety issues. We also discuss how the relationship between the scanning parameters can be manipulated to improve image quality while ensuring a safe operational environment for the patients and staff. Understanding the strengths and limitations of these parameters can enable users to choose optimal techniques for image acquisition, apply them in clinical practice, and improve the diagnostic accuracy of an MRI examination.
磁共振成像(MRI)是一种强大的诊断工具,可以进行优化以显示广泛的临床情况。MRI 系统由四个主要组成部分组成:由超导线圈、梯度线圈、射频(RF)线圈和计算机系统形成的主磁体。每个组件都有安全方面的考虑。除非小心控制,否则 MRI 机器的强静磁场可能会将铁磁物体变成有害的射弹,或导致眩晕和头痛。梯度中的磁场切换会在扫描仪中产生很大的噪音,可以通过耳塞来减轻。梯度还会产生变化的磁场,可能会引起周围神经刺激和肌肉抽搐。RF 线圈产生的磁场会在体内储存能量,并可能导致组织加热(有引起皮肤灼伤的潜力)。在这篇综述中,我们提供了典型临床 MRI 扫描仪及其相关安全问题的组件概述。我们还讨论了如何操纵扫描参数之间的关系,以在确保患者和工作人员安全操作环境的同时提高图像质量。了解这些参数的优缺点可以使使用者能够选择最佳的图像采集技术,将其应用于临床实践,并提高 MRI 检查的诊断准确性。