Bone Alexandria N, Widener Chelsea N, Moseley Duncan H, Liu Zhiming, Lu Zhengguang, Cheng Yongqiang, Daemen Luke L, Ozerov Mykhaylo, Telser Joshua, Thirunavukkuarasu Komalavalli, Smirnov Dmitry, Greer Samuel M, Hill Stephen, Krzystek J, Holldack Karsten, Aliabadi Azar, Schnegg Alexander, Dunbar Kim R, Xue Zi-Ling
Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA.
National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA.
Chemistry. 2021 Aug 2;27(43):11110-11125. doi: 10.1002/chem.202100705. Epub 2021 Jun 1.
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh ) X (Co-X; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.
金属配合物中磁能级的大分离和缓慢弛豫是单分子磁体(SMM)的理想特性。自旋 - 声子耦合(磁能级与声子的相互作用)无处不在,导致SMM中的磁弛豫和记忆丧失以及量子比特中的量子相干。直接观察分子中的磁跃迁和自旋 - 声子耦合具有挑战性。我们发现Co(PPh ) X(Co - X;X = Cl、Br、I)的远红外磁光谱(FIRMS)揭示了罕见的自旋 - 声子耦合,表现为磁跃迁与u对称声子跃迁之间的避免交叉。非弹性中子散射(INS)给出声子光谱。使用VASP和phonopy程序进行的计算给出了声子对称性和动画。通过INS、高频和高场电子顺磁共振(HFEPR)、FIRMS以及频域傅里叶变换太赫兹电子顺磁共振(FD - FT THz - EPR)探测了S = 3/2电子基态的零场分裂(ZFS)能级之间的磁跃迁,给出了磁激发光谱并确定了ZFS参数(D、E)和g值。配体场理论(LFT)用于分析早期的电子吸收光谱,并给出与实验结果匹配的计算ZFS参数。密度泛函理论(DFT)计算还给出了Co - X中的自旋密度,表明分子中Co(II)自旋密度越大,其ZFS幅度越大。当前的工作揭示了SMM中磁激发和声子激发的动力学。未来对这种耦合的研究将有助于理解自旋 - 声子耦合如何导致磁弛豫,并为控制这种耦合提供指导。