Suppr超能文献

氧空位增强的二维钛酸锂用于超快长寿命双功能锂存储

Oxygen Vacancy Enhanced Two-Dimensional Lithium Titanate for Ultrafast and Long-Life Bifunctional Lithium Storage.

作者信息

Liu Zhenjie, Huang Yudai, Cai Yanjun, Wang Xingchao, Zhang Yue, Guo Yong, Ding Juan, Cheng Wenhua

机构信息

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China.

Xinjiang Key Laboratory of Energy Storage and Photo Electrocatalytic Materials, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China.

出版信息

ACS Appl Mater Interfaces. 2021 Apr 28;13(16):18876-18886. doi: 10.1021/acsami.1c02962. Epub 2021 Apr 19.

Abstract

Boosting sufficient Li ion mobility in LiTiO (LTO) is crucial for high-rate performance lithium storage. Here, an ultrafast charge storage oxygen vacancy two-dimensional (2D) LTO nanosheet was successfully fabricated through a one-pot hydrothermal method. The selectively doped Al into octahedron Li/Ti 16d sites not only provide bulk oxygen vacancy and appropriate distorted TiO octahedra to facilitate Li ions diffusion, but also serve as a "pillar" to stabilize the Ti-O framework. The oxygen vacancy lowers Li ion diffusion energy barrier. Moreover, the 2D structure provides open diffusion channels for fast Li ion transport. As a result, the sample shows excellent electrochemical performance for bifunctional lithium storage. As a lithium-ion battery anode, the capacity retention reaches 112.8 mA h g after 5000 cycles at 40 C with a fading rate of 0.288% per 100 cycles. Meanwhile, as a lithium-ion capacitor anode, it exhibits an excellent rate capacity of 120 mA h g after 5000 cycles at 500 C with nearly 100% Coulombic efficiency. The produced LTO shows much higher rate capacity and longer lifetime than the reported LTO. Density functional theory calculations also demonstrate that oxygen vacancy can facilitate Li ion diffusion kinetics. The relationship between oxygen vacancy content and Li ions diffusion energy barrier in LTO is quantified. This work pioneers a defect engineering strategy for synthesized high-performance electrode materials.

摘要

提高LiTiO(LTO)中足够的锂离子迁移率对于高倍率性能的锂存储至关重要。在此,通过一锅水热法成功制备了一种超快电荷存储氧空位二维(2D)LTO纳米片。选择性地将Al掺杂到八面体Li/Ti 16d位点不仅提供大量氧空位和适当扭曲的TiO八面体以促进锂离子扩散,还作为“支柱”来稳定Ti-O框架。氧空位降低了锂离子扩散能垒。此外,二维结构为快速锂离子传输提供了开放的扩散通道。结果,该样品在双功能锂存储方面表现出优异的电化学性能。作为锂离子电池负极,在40℃下5000次循环后容量保持率达到112.8 mA h g,每100次循环的衰减率为0.288%。同时,作为锂离子电容器负极,在500℃下5000次循环后表现出优异的倍率容量120 mA h g,库仑效率接近100%。所制备的LTO比报道的LTO具有更高的倍率容量和更长的寿命。密度泛函理论计算也表明氧空位可以促进锂离子扩散动力学。量化了LTO中氧空位含量与锂离子扩散能垒之间的关系。这项工作开创了一种用于合成高性能电极材料的缺陷工程策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验