Suppr超能文献

从弱标注视频中定位异常

Localizing Anomalies From Weakly-Labeled Videos.

作者信息

Lv Hui, Zhou Chuanwei, Cui Zhen, Xu Chunyan, Li Yong, Yang Jian

出版信息

IEEE Trans Image Process. 2021;30:4505-4515. doi: 10.1109/TIP.2021.3072863. Epub 2021 Apr 28.

Abstract

Video anomaly detection under video-level labels is currently a challenging task. Previous works have made progresses on discriminating whether a video sequence contains anomalies. However, most of them fail to accurately localize the anomalous events within videos in the temporal domain. In this paper, we propose a Weakly Supervised Anomaly Localization (WSAL) method focusing on temporally localizing anomalous segments within anomalous videos. Inspired by the appearance difference in anomalous videos, the evolution of adjacent temporal segments is evaluated for the localization of anomalous segments. To this end, a high-order context encoding model is proposed to not only extract semantic representations but also measure the dynamic variations so that the temporal context could be effectively utilized. In addition, in order to fully utilize the spatial context information, the immediate semantics are directly derived from the segment representations. The dynamic variations as well as the immediate semantics, are efficiently aggregated to obtain the final anomaly scores. An enhancement strategy is further proposed to deal with noise interference and the absence of localization guidance in anomaly detection. Moreover, to facilitate the diversity requirement for anomaly detection benchmarks, we also collect a new traffic anomaly (TAD) dataset which specifies in the traffic conditions, differing greatly from the current popular anomaly detection evaluation benchmarks. Thedataset and the benchmark test codes, as well as experimental results, are made public on http://vgg-ai.cn/pages/Resource/ and https://github.com/ktr-hubrt/WSAL. Extensive experiments are conducted to verify the effectiveness of different components, and our proposed method achieves new state-of-the-art performance on the UCF-Crime and TAD datasets.

摘要

视频级标签下的视频异常检测目前是一项具有挑战性的任务。先前的工作在区分视频序列是否包含异常方面取得了进展。然而,它们中的大多数未能在时域内准确地定位视频中的异常事件。在本文中,我们提出了一种弱监督异常定位(WSAL)方法,专注于在异常视频中对异常片段进行时域定位。受异常视频中外观差异的启发,评估相邻时间片段的演变以定位异常片段。为此,提出了一种高阶上下文编码模型,不仅用于提取语义表示,还用于测量动态变化,以便有效地利用时间上下文。此外,为了充分利用空间上下文信息,直接从片段表示中导出即时语义。动态变化以及即时语义被有效地聚合以获得最终的异常分数。进一步提出了一种增强策略来处理异常检测中的噪声干扰和定位指导缺失的问题。此外,为了满足异常检测基准的多样性要求,我们还收集了一个新的交通异常(TAD)数据集,该数据集指定了交通状况,与当前流行的异常检测评估基准有很大不同。该数据集、基准测试代码以及实验结果在http://vgg-ai.cn/pages/Resource/和https://github.com/ktr-hubrt/WSAL上公开。进行了广泛的实验以验证不同组件的有效性,我们提出的方法在UCF-Crime和TAD数据集上取得了新的最优性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验