Suppr超能文献

基于图的几何推理中的反例搜索。

Counterexample Search in Diagram-Based Geometric Reasoning.

机构信息

Centre for Logic and Philosophy of Science, Vrije Universiteit Brussel.

Philosophy Department, California State University of San Bernardino.

出版信息

Cogn Sci. 2021 Apr;45(4):e12959. doi: 10.1111/cogs.12959.

Abstract

Topological relations such as inside, outside, or intersection are ubiquitous to our spatial thinking. Here, we examined how people reason deductively with topological relations between points, lines, and circles in geometric diagrams. We hypothesized in particular that a counterexample search generally underlies this type of reasoning. We first verified that educated adults without specific math training were able to produce correct diagrammatic representations contained in the premisses of an inference. Our first experiment then revealed that subjects who correctly judged an inference as invalid almost always produced a counterexample to support their answer. Noticeably, even if the counterexample always bore a certain level of similarity to the initial diagram, we observed that an object was more likely to be varied between the two drawings if it was present in the conclusion of the inference. Experiments 2 and 3 then directly probed counterexample search. While participants were asked to evaluate a conclusion on the basis of a given diagram and some premisses, we modulated the difficulty of reaching a counterexample from the diagram. Our results indicate that both decreasing the counterexample density and increasing the counterexample distance impaired reasoning performance. Taken together, our results suggest that a search procedure for counterexamples, which proceeds object-wise, could underlie diagram-based geometric reasoning. Transposing points, lines, and circles to our spatial environment, the present study may ultimately provide insights on how humans reason about topological relations between positions, paths, and regions.

摘要

拓扑关系,如内部、外部或交集,在我们的空间思维中无处不在。在这里,我们研究了人们如何在几何图形中通过点、线和圆之间的拓扑关系进行演绎推理。我们特别假设,反例搜索通常是这种推理的基础。我们首先验证了没有特定数学训练的受过教育的成年人能够生成推理前提中包含的正确图形表示。我们的第一个实验表明,正确判断推理无效的受试者几乎总是会生成一个反例来支持他们的答案。值得注意的是,即使反例总是与初始图形具有一定程度的相似性,我们也观察到,如果对象出现在推理结论中,则两个图形之间更有可能对其进行改变。实验 2 和 3 然后直接探测反例搜索。当要求参与者根据给定的图形和一些前提来评估结论时,我们会调整从图形中找到反例的难度。我们的结果表明,降低反例密度和增加反例距离都会损害推理表现。总的来说,我们的结果表明,基于对象的反例搜索过程可能是基于图形的几何推理的基础。将点、线和圆转换到我们的空间环境中,本研究最终可能会为我们提供有关人类如何对位置、路径和区域之间的拓扑关系进行推理的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验