State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Eye & ENT Hospital, Fudan University, Shanghai, 200438, China.
Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.
Genome Res. 2021 May;31(5):890-899. doi: 10.1101/gr.270256.120. Epub 2021 Apr 19.
Single nucleotide variants (SNVs) within polyadenylation signals (PASs), a specific six-nucleotide sequence required for mRNA maturation, can impair RNA-level gene expression and cause human diseases. However, there is a lack of genome-wide investigation and systematic confirmation tools for identifying PAS variants. Here, we present a computational strategy to integrate the most reliable resources for discovering distinct genomic features of PAS variants and also develop a credible and convenient experimental tool to validate the effect of PAS variants on expression of disease-associated genes. This approach will greatly accelerate the deciphering of PAS variation-related human diseases.
单核苷酸变异(SNVs)位于多聚腺苷酸化信号(PASs)内,PAS 是一种特定的六核苷酸序列,是 mRNA 成熟所必需的,可损害 RNA 水平的基因表达并导致人类疾病。然而,目前缺乏用于识别 PAS 变异的全基因组研究和系统确认工具。在这里,我们提出了一种计算策略,用于整合发现 PAS 变异的最可靠资源,以整合发现 PAS 变异的最可靠资源,同时开发一种可靠且方便的实验工具来验证 PAS 变异对疾病相关基因表达的影响。这种方法将极大地加速对 PAS 变异相关人类疾病的破译。