Buglak Andrey A, Charisiadis Asterios, Sheehan Aimee, Kingsbury Christopher J, Senge Mathias O, Filatov Mikhail A
Faculty of Physics, Saint-Petersburg State University, Universiteteskaya Emb. 7-9, 199034, St. Petersburg, Russia.
Chair of Organic Chemistry School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin The University of Dublin, 152-160, Pearse Street, Dublin 2, Ireland.
Chemistry. 2021 Jul 7;27(38):9934-9947. doi: 10.1002/chem.202100922. Epub 2021 May 26.
Heavy-atom-free sensitizers forming long-living triplet excited states via the spin-orbit charge transfer intersystem crossing (SOCT-ISC) process have recently attracted attention due to their potential to replace costly transition metal complexes in photonic applications. The efficiency of SOCT-ISC in BODIPY donor-acceptor dyads, so far the most thoroughly investigated class of such sensitizers, can be finely tuned by structural modification. However, predicting the triplet state yields and reactive oxygen species (ROS) generation quantum yields for such compounds in a particular solvent is still very challenging due to a lack of established quantitative structure-property relationship (QSPR) models. In this work, the available data on singlet oxygen generation quantum yields (Φ ) for a dataset containing >70 heavy-atom-free BODIPY in three different solvents (toluene, acetonitrile, and tetrahydrofuran) were analyzed. In order to build reliable QSPR model, a series of new BODIPYs were synthesized that bear different electron donating aryl groups in the meso position, their optical and structural properties were studied along with the solvent dependence of singlet oxygen generation, which confirmed the formation of triplet states via the SOCT-ISC mechanism. For the combined dataset of BODIPY structures, a total of more than 5000 quantum-chemical descriptors was calculated including quantum-chemical descriptors using density functional theory (DFT), namely M06-2X functional. QSPR models predicting ΦΔ values were developed using multiple linear regression (MLR), which perform significantly better than other machine learning methods and show sufficient statistical parameters (R=0.88-0.91 and q =0.62-0.69) for all three solvents. A small root mean squared error of 8.2 % was obtained for Φ values predicted using MLR model in toluene. As a result, we proved that QSPR and machine learning techniques can be useful for predicting ΦΔ values in different media and virtual screening of new heavy-atom-free BODIPYs with improved photosensitizing ability.
通过自旋轨道电荷转移系间窜越(SOCT-ISC)过程形成长寿命三重激发态的无重原子敏化剂,因其在光子应用中具有替代昂贵过渡金属配合物的潜力,最近受到了关注。到目前为止,BODIPY供体-受体二元体系是此类敏化剂中研究最为深入的一类,SOCT-ISC的效率可以通过结构修饰进行精细调节。然而,由于缺乏成熟的定量结构-性质关系(QSPR)模型,预测此类化合物在特定溶剂中的三重态产率和活性氧(ROS)生成量子产率仍然极具挑战性。在这项工作中,分析了一个包含70多种无重原子BODIPY的数据集在三种不同溶剂(甲苯、乙腈和四氢呋喃)中的单线态氧生成量子产率(ΦΔ)的可用数据。为了建立可靠的QSPR模型,合成了一系列在中位带有不同供电子芳基的新型BODIPY,研究了它们的光学和结构性质以及单线态氧生成的溶剂依赖性,这证实了通过SOCT-ISC机制形成三重态。对于BODIPY结构的组合数据集,总共计算了5000多个量子化学描述符,包括使用密度泛函理论(DFT)即M06-2X泛函的量子化学描述符。使用多元线性回归(MLR)开发了预测ΦΔ值的QSPR模型,该模型的性能明显优于其他机器学习方法,并且对所有三种溶剂都显示出足够的统计参数(R = 0.88 - 0.91和q = 0.62 - 0.69)。使用MLR模型预测甲苯中的Φ值时,获得了8.2%的小均方根误差。结果,我们证明了QSPR和机器学习技术可用于预测不同介质中的ΦΔ值以及对具有改进光敏能力的新型无重原子BODIPY进行虚拟筛选。