IEEE Trans Image Process. 2021;30:5182-5197. doi: 10.1109/TIP.2021.3073294. Epub 2021 May 25.
Measuring Quality of Experience (QoE) and integrating these measurements into video streaming algorithms is a multi-faceted problem that fundamentally requires the design of comprehensive subjective QoE databases and objective QoE prediction models. To achieve this goal, we have recently designed the LIVE-NFLX-II database, a highly-realistic database which contains subjective QoE responses to various design dimensions, such as bitrate adaptation algorithms, network conditions and video content. Our database builds on recent advancements in content-adaptive encoding and incorporates actual network traces to capture realistic network variations on the client device. The new database focuses on low bandwidth conditions which are more challenging for bitrate adaptation algorithms, which often must navigate tradeoffs between rebuffering and video quality. Using our database, we study the effects of multiple streaming dimensions on user experience and evaluate video quality and quality of experience models and analyze their strengths and weaknesses. We believe that the tools introduced here will help inspire further progress on the development of perceptually-optimized client adaptation and video streaming strategies. The database is publicly available at http://live.ece.utexas.edu/research/LIVE_NFLX_II/live_nflx_plus.html.
测量体验质量(QoE)并将这些测量结果集成到视频流算法中是一个多方面的问题,从根本上需要设计全面的主观 QoE 数据库和客观 QoE 预测模型。为了实现这一目标,我们最近设计了 LIVE-NFLX-II 数据库,这是一个高度逼真的数据库,其中包含了对各种设计维度的主观 QoE 响应,例如比特率自适应算法、网络条件和视频内容。我们的数据库建立在内容自适应编码的最新进展之上,并结合了实际的网络跟踪,以捕捉客户端设备上的真实网络变化。新数据库侧重于低带宽条件,这对比特率自适应算法来说更具挑战性,因为它们通常必须在缓冲和视频质量之间进行权衡。使用我们的数据库,我们研究了多个流维度对用户体验的影响,并评估了视频质量和体验质量模型,并分析了它们的优缺点。我们相信,这里介绍的工具将有助于激发进一步开发基于感知优化的客户端自适应和视频流策略的进展。该数据库可在 http://live.ece.utexas.edu/research/LIVE_NFLX_II/live_nflx_plus.html 上公开获取。