Environment Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
Environment Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran; Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South Africa, P. O. Box 392, Florida, 1710, South Africa.
J Environ Manage. 2021 Jul 15;290:112649. doi: 10.1016/j.jenvman.2021.112649. Epub 2021 Apr 17.
Developing an effective and stable separation membrane for water treatment is of much interest while challenging because of the restrictions of membrane fouling and water flux reduction. To minimize this problem, in this work, highly porous and hydrophilic nanostructure of NH-modified MCM-41 (NH-MCM-41) was embedded successfully into the nanofiltration (NF) membrane body via commonly used phase inversion method. The unmodified and modified nanofiller was analyzed by Fourier Transform Infrared (FTIR) spectroscopy, X-Ray powder diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), and nitrogen adsorption-desorption. Furthermore, the modified membranes were characterized through surface and cross section FE-SEM images, the membrane surface roughness, hydrophilicity, antifouling properties and dye rejection. Benefiting from porous networks and enhanced hydrophilicity, the mixed matrix membranes (MMMs) revealed more prominent hydrophilic property as well as higher pure water flux (PWF) compared with naked membrane. The polysulphone (PSf) membrane modified with NH-MCM-41-1.0 exhibited the highest pure water flux (PWF) of 65.43 kg/m.h and superior antifouling characteristics with a flux recovery ratio (FRR) of around 97.0% and an irreversible fouling resistance (R) of 3.2%. Furthermore, the optimal membrane possessed high dye rejection (100%) and antifouling capacity (FRR of 97%) while filtering a field sample, effluent from a local stabilization pond treating municipal wastewater. The fabricated membrane in this study is believed to pave pathways for constructing NF membranes with superior effectiveness for other municipal and industrial wastewaters treatment.
开发用于水处理的有效且稳定的分离膜具有很大的意义,但由于膜污染和水通量降低的限制,这是一个具有挑战性的问题。为了最大限度地减少这个问题,在这项工作中,通过常用的相转化法成功地将具有高多孔和亲水纳米结构的 NH 修饰的 MCM-41(NH-MCM-41)嵌入纳滤(NF)膜主体中。通过傅里叶变换红外(FTIR)光谱、X 射线粉末衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、热重分析(TGA)和氮气吸附-解吸对未修饰和修饰的纳米填料进行了分析。此外,通过对改性膜进行表面和横截面 FE-SEM 图像、膜表面粗糙度、亲水性、抗污染性能和染料截留率的分析,对改性膜进行了表征。受益于多孔网络和增强的亲水性,与裸膜相比,混合基质膜(MMM)表现出更显著的亲水性和更高的纯水通量(PWF)。用 NH-MCM-41-1.0 修饰的聚砜(PSf)膜表现出最高的纯水通量(PWF)为 65.43 kg/m.h,具有较高的抗污染特性,通量恢复率(FRR)约为 97.0%,不可逆污染阻力(R)为 3.2%。此外,该最佳膜具有高染料截留率(100%)和抗污染能力(FRR 为 97%),同时过滤现场水样,即当地稳定塘处理城市污水的出水。本研究中制备的膜有望为构建用于处理其他城市和工业废水的具有优异效果的 NF 膜铺平道路。