Suppr超能文献

血液酒精浓度的机器学习预测:智能呼吸分析仪行为的数字签名。

Machine learning prediction of blood alcohol concentration: a digital signature of smart-breathalyzer behavior.

作者信息

Aschbacher Kirstin, Hendershot Christian S, Tison Geoffrey, Hahn Judith A, Avram Robert, Olgin Jeffrey E, Marcus Gregory M

机构信息

Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.

Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.

出版信息

NPJ Digit Med. 2021 Apr 20;4(1):74. doi: 10.1038/s41746-021-00441-4.

Abstract

Excess alcohol use is an important determinant of death and disability. Machine learning (ML)-driven interventions leveraging smart-breathalyzer data may help reduce these harms. We developed a digital phenotype of long-term smart-breathalyzer behavior to predict individuals' breath alcohol concentration (BrAC) levels trained on data from a smart breathalyzer. We analyzed roughly one million datapoints from 33,452 users of a commercial smart-breathalyzer device, collected between 2013 and 2017. For validation, we analyzed the associations between state-level observed smart-breathalyzer BrAC levels and impaired-driving motor vehicle death rates. Behavioral, geolocation-based, and time-series-derived features were fed to an ML algorithm using training (70% of the cohort), development (10% of the cohort), and test (20% of the cohort) sets to predict the likelihood of a BrAC exceeding the legal driving limit (0.08 g/dL). States with higher average BrAC levels had significantly higher alcohol-related driving death rates, adjusted for the number of users per state B (SE) = 91.38 (15.16), p < 0.01. In the independent test set, the ML algorithm predicted the likelihood of a given user-initiated BrAC sample exceeding BrAC ≥ 0.08 g/dL, with an area under the curve (AUC) of 85%. Highly predictive features included users' prior BrAC trends, subjective estimation of their BrAC (or AUC = 82% without the self-estimate), engagement and self-monitoring, time since the last measure, and hour of the day. In conclusion, an ML algorithm successfully quantified a digital phenotype of behavior, predicting naturalistic BrAC levels exceeding 0.08 g/dL (a threshold associated with alcohol-related harm) with good discrimination capability. This result establishes a foundation for future research on precision behavioral medicine digital health interventions using smart breathalyzers and passive monitoring approaches.

摘要

过量饮酒是导致死亡和残疾的一个重要因素。利用智能呼吸酒精测试仪数据的机器学习驱动干预措施可能有助于减少这些危害。我们开发了一种长期智能呼吸酒精测试仪行为的数字表型,以预测个体的呼气酒精浓度(BrAC)水平,该数字表型是根据智能呼吸酒精测试仪的数据进行训练的。我们分析了2013年至2017年期间从33452名商业智能呼吸酒精测试仪设备用户中收集的约100万个数据点。为了进行验证,我们分析了州级观察到的智能呼吸酒精测试仪BrAC水平与酒后驾车机动车死亡率之间的关联。行为、基于地理位置和时间序列衍生的特征被输入到一个机器学习算法中,使用训练集(队列的70%)、开发集(队列的10%)和测试集(队列的20%)来预测BrAC超过法定驾驶限制(0.08 g/dL)的可能性。平均BrAC水平较高的州,经各州用户数量调整后,与酒精相关的驾驶死亡率显著更高,B(标准误)= 91.38(15.16),p < 0.01。在独立测试集中,机器学习算法预测给定用户发起的BrAC样本超过BrAC≥0.08 g/dL的可能性,曲线下面积(AUC)为85%。高度预测性特征包括用户先前的BrAC趋势、对其BrAC的主观估计(或不包括自我估计时AUC = 82%)、参与度和自我监测、自上次测量以来的时间以及一天中的时间。总之,一种机器学习算法成功地量化了一种行为数字表型,能够很好地辨别出超过0.08 g/dL的自然BrAC水平(与酒精相关危害相关的阈值)。这一结果为未来使用智能呼吸酒精测试仪和被动监测方法进行精准行为医学数字健康干预的研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94c/8058037/2df6059d947c/41746_2021_441_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验