Zeng Min, Locardi Federico, Mara Dimitrije, Hens Zeger, Van Deun Rik, Artizzu Flavia
Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Sciences, Hubei University, Wuhan 430062, China and L3-Luminescent Lanthanide Lab, Ghent University, Gent 9000, Belgium.
Physics and Chemistry of Nanostructures (PCN), Ghent University, Gent 9000, Belgium.
Nanoscale. 2021 May 6;13(17):8118-8125. doi: 10.1039/d1nr00385b.
The accessible emission spectral range of lead halide perovskite (LHP) CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) has remained so far limited to wavelengths below 1 μm, corresponding to the emission line of Yb3+, whereas the direct sensitization of other near-infrared (NIR) emitting lanthanide ions is unviable. Herein, we present a general strategy to enable intense NIR emission from Er3+ at ∼1.5 μm, Ho3+ at ∼1.0 μm and Nd3+ at ∼1.06 μm through a Mn2+-mediated energy-transfer pathway. Steady-state and time-resolved photoluminescence studies show that energy-transfer efficiencies of about 39%, 35% and 70% from Mn2+ to Er3+, Ho3+ and Nd3+ are obtained, leading to photoluminescence quantum yields of ∼0.8%, ∼0.7% and ∼3%, respectively. This work provides guidance on constructing energy-transfer pathways in semiconductors and opens new perspectives for the development of lanthanide-functionalized LHPs as promising materials for optoelectronic devices operating in the NIR region.
迄今为止,卤化铅钙钛矿(LHP)CsPbX3(X = Cl、Br、I)纳米晶体(NCs)的可及发射光谱范围一直局限于波长低于1μm,这对应于Yb3+的发射线,而其他近红外(NIR)发射镧系离子的直接敏化则不可行。在此,我们提出了一种通用策略,通过Mn2+介导的能量转移途径,使Er3+在1.5μm、Ho3+在1.0μm和Nd3+在~1.06μm处实现强近红外发射。稳态和时间分辨光致发光研究表明,从Mn2+到Er3+、Ho3+和Nd3+的能量转移效率分别约为39%、35%和70%,导致光致发光量子产率分别约为0.8%、0.7%和3%。这项工作为在半导体中构建能量转移途径提供了指导,并为开发镧系功能化的LHP开辟了新的前景,使其成为在近红外区域工作的光电器件的有前途的材料。