School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.
Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
Biomacromolecules. 2021 May 10;22(5):2010-2019. doi: 10.1021/acs.biomac.1c00131. Epub 2021 Apr 21.
Rational protein design requires understanding the contribution of each amino acid to a targeted protein fold. For a subset of protein structures, namely, α-helical coiled coils (CCs), knowledge is sufficiently advanced to allow the rational design of many structures, including entirely new protein folds. Current CC design rules center on using aliphatic hydrophobic residues predominantly to drive the folding and assembly of amphipathic α helices. The consequences of using aromatic residues-which would be useful for introducing structural probes, and binding and catalytic functionalities-into these interfaces are not understood. There are specific examples of designed CCs containing such aromatic residues, ., phenylalanine-rich sequences, and the use of polar aromatic residues to make buried hydrogen-bond networks. However, it is not known generally if sequences rich in tyrosine can form CCs, or what CC assemblies these would lead to. Here, we explore tyrosine-rich sequences in a general CC-forming background and resolve new CC structures. In one of these, an antiparallel tetramer, the tyrosine residues are solvent accessible and pack at the interface between the core and the surface. In another more complex structure, the residues are buried and form an extended hydrogen-bond network.
理性蛋白质设计需要了解每个氨基酸对目标蛋白质折叠的贡献。对于一小部分蛋白质结构,即α-螺旋卷曲螺旋(CC),知识已经足够先进,可以允许对许多结构进行合理设计,包括全新的蛋白质折叠。当前的 CC 设计规则主要集中在使用脂肪族疏水性残基来驱动两亲性α螺旋的折叠和组装。在这些界面中使用芳香族残基的后果(这对于引入结构探针以及结合和催化功能很有用)尚不清楚。已经有包含这种芳香族残基的特定设计 CC 的例子,例如富含苯丙氨酸的序列,以及使用极性芳香族残基来形成埋藏的氢键网络。然而,通常尚不清楚富含酪氨酸的序列是否可以形成 CC,或者这些 CC 会导致什么组装。在这里,我们在一般的 CC 形成背景下探索富含酪氨酸的序列,并解析新的 CC 结构。在其中一种结构中,反平行四聚体中,酪氨酸残基是可溶剂的,并在核心和表面之间的界面处堆积。在另一个更复杂的结构中,这些残基被埋藏并形成扩展的氢键网络。