Suppr超能文献

一种埋藏的极性相互作用赋予了一种设计的异源二聚卷曲螺旋结构独特性。

A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil.

作者信息

Lumb K J, Kim P S

机构信息

Howard Hughes Medical Institute, Department of Biology, Cambridge, Massachusetts 02142, USA.

出版信息

Biochemistry. 1995 Jul 11;34(27):8642-8. doi: 10.1021/bi00027a013.

Abstract

Buried polar residues are a common feature of natural proteins. ACID-p1 and BASE-p1 are two designed peptides that form a parallel, heterodimeric coiled coil with a fixed tertiary structure [O'Shea, E. K., Lumb, K. J., & Kim, P. S. (1993) Curr. Biol. 3, 658-667]. The interface between the ACID-p1 and BASE-p1 helices consists of hydrophobic Leu residues, with the exception of a single polar residue, Asn 14. In the crystal structure of the GCN4 leucine zipper coiled coil, an analogous Asn is hydrogen bonded to the corresponding Asn of the opposing helix, thereby forming a buried polar interaction in an otherwise hydrophobic interface between the helices [O'Shea, E. K., Klemm, J. D., Kim, P. S., & Alber, T. (1991) Science 254, 539-544]. This buried polar interaction in the ACID-p1/BASE-p1 heterodimer was removed by substituting Asn 14 with Leu. The Asn 14-->Leu variants are significantly more stable than the p1 peptides and preferentially form a heterotetramer instead of a heterodimer. Strikingly, the heterotetramer does not fold into a unique structure; in particular, the helices lack a unique orientation. Thus, the Asn 14 residue imparts specificity for formation of a two-stranded, parallel coiled coil at the expense of stability. The results suggest that, whereas nonspecific hydrophobic interactions contribute to protein stability, the requirement to satisfy the hydrogen bonding potential of buried polar residues in the generally hydrophobic environment of the protein interior can impart specificity (structural uniqueness) to protein folding and design.

摘要

埋藏的极性残基是天然蛋白质的一个常见特征。ACID-p1和BASE-p1是两种设计肽,它们形成具有固定三级结构的平行异源二聚体卷曲螺旋[奥谢,E.K.,伦布,K.J.,&金,P.S.(1993年)《当代生物学》3,658 - 667]。ACID-p1和BASE-p1螺旋之间的界面由疏水性亮氨酸残基组成,除了单个极性残基天冬酰胺14。在GCN4亮氨酸拉链卷曲螺旋的晶体结构中,类似的天冬酰胺与相对螺旋的相应天冬酰胺形成氢键,从而在螺旋之间原本疏水的界面中形成埋藏的极性相互作用[奥谢,E.K.,克莱姆,J.D.,金,P.S.,&阿尔伯,T.(1991年)《科学》254,539 - 544]。通过用亮氨酸取代天冬酰胺14消除了ACID-p1/BASE-p1异二聚体中的这种埋藏的极性相互作用。天冬酰胺14→亮氨酸变体比p1肽显著更稳定,并且优先形成异源四聚体而不是异二聚体。引人注目的是,异源四聚体不会折叠成独特的结构;特别是,螺旋缺乏独特的取向。因此,天冬酰胺14残基以稳定性为代价赋予形成双链平行卷曲螺旋的特异性。结果表明,虽然非特异性疏水相互作用有助于蛋白质稳定性,但在蛋白质内部通常疏水的环境中满足埋藏极性残基氢键潜力的要求可以赋予蛋白质折叠和设计特异性(结构独特性)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验