INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France.
CCMA-Université Côte d'Azur, Nice, France.
Acta Neuropathol. 2021 Jun;141(6):823-839. doi: 10.1007/s00401-021-02308-0. Epub 2021 Apr 21.
One of the main components of senile plaques in Alzheimer's disease (AD)-affected brain is the Aβ peptide species harboring a pyroglutamate at position three pE3-Aβ. Several studies indicated that pE3-Aβ is toxic, prone to aggregation and serves as a seed of Aβ aggregation. The cyclisation of the glutamate residue is produced by glutaminyl cyclase, the pharmacological and genetic reductions of which significantly alleviate AD-related anatomical lesions and cognitive defects in mice models. The cyclisation of the glutamate in position 3 requires prior removal of the Aβ N-terminal aspartyl residue to allow subsequent biotransformation. The enzyme responsible for this rate-limiting catalytic step and its relevance as a putative trigger of AD pathology remained yet to be established. Here, we identify aminopeptidase A as the main exopeptidase involved in the N-terminal truncation of Aβ and document its key contribution to AD-related anatomical and behavioral defects. First, we show by mass spectrometry that human recombinant aminopeptidase A (APA) truncates synthetic Aβ1-40 to yield Aβ2-40. We demonstrate that the pharmacological blockade of APA with its selective inhibitor RB150 restores the density of mature spines and significantly reduced filopodia-like processes in hippocampal organotypic slices cultures virally transduced with the Swedish mutated Aβ-precursor protein (βAPP). Pharmacological reduction of APA activity and lowering of its expression by shRNA affect pE3-42Aβ- and Aβ1-42-positive plaques and expressions in 3xTg-AD mice brains. Further, we show that both APA inhibitors and shRNA partly alleviate learning and memory deficits observed in 3xTg-AD mice. Importantly, we demonstrate that, concomitantly to the occurrence of pE3-42Aβ-positive plaques, APA activity is augmented at early Braak stages in sporadic AD brains. Overall, our data indicate that APA is a key enzyme involved in Aβ N-terminal truncation and suggest the potential benefit of targeting this proteolytic activity to interfere with AD pathology.
阿尔茨海默病(AD)患者大脑中的老年斑的主要成分之一是含有 3 位焦谷氨酸(pE3-Aβ)的 Aβ 肽。多项研究表明,pE3-Aβ 具有毒性,易于聚集并充当 Aβ 聚集的种子。谷氨酸残基的环化由谷氨酰环化酶产生,该酶的药理学和遗传学降低可显著减轻 AD 相关的解剖病变和小鼠模型中的认知缺陷。位置 3 处谷氨酸的环化需要先去除 Aβ N 端天冬氨酸残基,以允许随后的生物转化。负责该限速催化步骤的酶及其作为 AD 病理的潜在触发因素的相关性尚未确定。在这里,我们鉴定出氨肽酶 A 是 Aβ N 端截断的主要外肽酶,并证明了其对 AD 相关解剖和行为缺陷的关键贡献。首先,我们通过质谱法表明,人重组氨肽酶 A(APA)可将合成的 Aβ1-40 截断为 Aβ2-40。我们证明,用其选择性抑制剂 RB150 对 APA 进行药理学阻断可恢复成熟棘密度,并显着减少病毒转导的海马器官型切片培养物中 Swedish 突变的 Aβ 前体蛋白(βAPP)的丝状伪足样过程。APA 活性的药理学降低和 shRNA 降低其表达会影响 3xTg-AD 小鼠大脑中的 pE3-42Aβ-和 Aβ1-42 阳性斑块和表达。此外,我们表明,APA 抑制剂和 shRNA 均可部分缓解 3xTg-AD 小鼠中观察到的学习和记忆缺陷。重要的是,我们证明在散发性 AD 大脑中,与 pE3-42Aβ 阳性斑块的发生同时,APA 活性在早 Braak 阶段增加。总体而言,我们的数据表明 APA 是参与 Aβ N 端截断的关键酶,并表明靶向这种蛋白水解活性以干扰 AD 病理的潜在益处。