Suppr超能文献

铜催化的卤代烃羰基化偶联反应

Copper-Catalyzed Carbonylative Coupling of Alkyl Halides.

作者信息

Cheng Li-Jie, Mankad Neal P

机构信息

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States.

出版信息

Acc Chem Res. 2021 May 4;54(9):2261-2274. doi: 10.1021/acs.accounts.1c00115. Epub 2021 Apr 21.

Abstract

Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.

摘要

过渡金属催化的羰基化反应是一种将氧官能团引入有机化合物的直接且原子经济的方法,其中CO作为廉价且易于获得的C1原料。尽管羰基化催化历史悠久,包括许多已大规模工业化的过程,但仍有几个挑战需要应对。例如,钯、铑和铱等贵金属通常用作羰基化反应的催化剂,而非储量丰富的替代金属。此外,虽然C(sp)杂化底物(如芳基卤化物)的羰基化反应是众所周知的,但未活化的烷基亲电试剂的羰基化反应,特别是在β-氢消除可在催化剂位点与所需的CO迁移插入竞争的情况下,对许多体系来说仍然具有挑战性。最近,基于锰、钴和其他金属的贱金属催化使得烷基亲电试剂的羰基化偶联取得了进展,不过亲核试剂通常限于醇或胺,以生成酯或酰胺作为产物。因此,我们将贱金属催化的羰基化C-C和C-E(E = N、H、Si、B)偶联反应作为一种合成具有重要意义的各种羰基化合物的方法。

最初,我们设计了一种用于卤代烷与芳基硼酸酯的羰基化C-C偶联(即羰基化铃木-宫浦偶联)以生成芳基烷基酮的异双金属催化剂平台。随后,我们开发了使用NHC-Cu催化剂(NHC = N-杂环卡宾)的卤代烷多组分羰基化反应。这些反应通过自由基机理进行,将卤代烷转化为酰基自由基或酰基卤中间体,这些中间体随后在铜位点发生C-C或C-E偶联。这种机理模式在金属催化的羰基化领域相对新颖,使我们能够在羰基化偶联催化中发现一个以前未探索的化学空间。我们成功开发了以下反应:(a)炔烃与卤代烷的氢羰基化偶联;(b)炔烃与卤代烷的硼羰基化偶联;(c)卤代烷与硝基芳烃的还原胺羰基化反应;(d)卤代烷的还原羰基化反应;(e)卤代烷的羰基化硅基化反应;(f)卤代烷的羰基化硼基化反应。这些反应以高效的方式提供了广泛的有价值的产物,包括酮、烯丙醇、β-硼烯酮、酰胺、醇、酰基硅烷和酰基硼。值得注意的是,这些产物中的一些以前需要多步合成、苛刻的条件或特殊的试剂。相比之下,我们开发的多组分偶联平台只需要容易获得的原料,并在单一的合成操作中迅速增加分子复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验