Suppr超能文献

基于卷积神经网络的计算机断层成像鉴别诊断造釉细胞瘤和牙源性角化囊肿。

Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network.

机构信息

Postgraduate Program in Dentistry and Health, Federal University of Bahia, Salvador, Brazil.

Computer Science Department, Federal Institute of Education, Science and Technology of Bahia, Senhor do Bonfim, Bahia, Brazil.

出版信息

Dentomaxillofac Radiol. 2021 Oct 1;50(7):20210002. doi: 10.1259/dmfr.20210002. Epub 2021 Apr 29.

Abstract

OBJECTIVE

To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs).

METHODS

For construction of the database, we selected axial multidetector CT images from patients with confirmed AM ( = 22) and OKC ( = 18) based on a conclusive histopathological report. The images ( = 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method ( = 2) was used to estimate the accuracy of the CNN model.

RESULTS

The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images.

CONCLUSION

This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.

摘要

目的

分析卷积神经网络(CNN)——Google Inception v3 在牙源性角化囊肿(OKC)和造釉细胞瘤(AM)的断层图像中的自动分类性能。

方法

为了构建数据库,我们根据明确的组织病理学报告,选择了经证实患有 AM(n=22)和 OKC(n=18)的患者的轴向多排 CT 图像。这些图像(n=350)由手动分割,并应用了数据扩充算法,总共得到了 2500 张图像。我们使用 k 折×五交叉验证法(n=2)来估计 CNN 模型的准确性。

结果

五次迭代的交叉验证准确率和标准差(%)分别为 90.16±0.95、91.37±0.57、91.62±0.19、92.48±0.16 和 91.21±0.87。AM 图像的分类错误率较高。

结论

本研究表明,Google Inception v3 对 OKC 和 AM 的断层图像具有较高的分类准确性。然而,AM 图像的错误率较高。

相似文献

1
Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network.
Dentomaxillofac Radiol. 2021 Oct 1;50(7):20210002. doi: 10.1259/dmfr.20210002. Epub 2021 Apr 29.
2
Odontogenic keratocyst and ameloblastoma: radiographic evaluation.
Oral Radiol. 2021 Jan;37(1):55-65. doi: 10.1007/s11282-020-00425-2. Epub 2020 Feb 6.
3
5
Diagnostic capability of artificial intelligence tools for detecting and classifying odontogenic cysts and tumors: a systematic review and meta-analysis.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 Sep;138(3):414-426. doi: 10.1016/j.oooo.2024.03.004. Epub 2024 Mar 19.
6
Using CT texture analysis to differentiate cystic and cystic-appearing odontogenic lesions.
Eur J Radiol. 2019 Nov;120:108654. doi: 10.1016/j.ejrad.2019.108654. Epub 2019 Sep 9.
7
[Application of Deep Learning in Differential Diagnosis of Ameloblastoma and Odontogenic Keratocyst Based on Panoramic Radiographs].
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2023 Apr;45(2):273-279. doi: 10.3881/j.issn.1000-503X.15139.
8
Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs.
Int J Comput Assist Radiol Surg. 2021 Mar;16(3):415-422. doi: 10.1007/s11548-021-02309-0. Epub 2021 Feb 6.
10
[Radiographic studies of so-called odontogenic keratocyst and ameloblastoma].
Tohoku Shika Daigaku Gakkai Shi. 1987 Nov;14(3):179-86.

引用本文的文献

1
Machine learning in dentistry and oral surgery: charting the course with bibliometric insights.
Head Face Med. 2025 Jun 4;21(1):44. doi: 10.1186/s13005-025-00521-w.
4
Artificial intelligence-powered dentistry: Probing the potential, challenges, and ethicality of artificial intelligence in dentistry.
Digit Health. 2024 Nov 11;10:20552076241291345. doi: 10.1177/20552076241291345. eCollection 2024 Jan-Dec.
6
Differential Diagnosis of OKC and SBC on Panoramic Radiographs: Leveraging Deep Learning Algorithms.
Diagnostics (Basel). 2024 May 30;14(11):1144. doi: 10.3390/diagnostics14111144.
9
Automatic segmentation of ameloblastoma on ct images using deep learning with limited data.
BMC Oral Health. 2024 Jan 9;24(1):55. doi: 10.1186/s12903-023-03587-7.

本文引用的文献

1
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
2
Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network.
Dentomaxillofac Radiol. 2020 Dec 1;49(8):20200185. doi: 10.1259/dmfr.20200185. Epub 2020 Jul 3.
3
Odontogenic keratocyst and ameloblastoma: radiographic evaluation.
Oral Radiol. 2021 Jan;37(1):55-65. doi: 10.1007/s11282-020-00425-2. Epub 2020 Feb 6.
4
Data Augmentation for Brain-Tumor Segmentation: A Review.
Front Comput Neurosci. 2019 Dec 11;13:83. doi: 10.3389/fncom.2019.00083. eCollection 2019.
5
A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
Eur Radiol. 2020 Apr;30(4):1847-1855. doi: 10.1007/s00330-019-06533-w. Epub 2019 Dec 6.
6
Odontogenic Cysts.
Dent Clin North Am. 2020 Jan;64(1):105-119. doi: 10.1016/j.cden.2019.08.002. Epub 2019 Oct 18.
7
Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs.
Radiology. 2020 Jan;294(1):199-209. doi: 10.1148/radiol.2019182465. Epub 2019 Nov 12.
8
Accuracy of computer-assisted image analysis in the diagnosis of maxillofacial radiolucent lesions: A systematic review and meta-analysis.
Dentomaxillofac Radiol. 2020 Mar;49(3):20190204. doi: 10.1259/dmfr.20190204. Epub 2019 Nov 20.
10
Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography.
Oral Radiol. 2020 Oct;36(4):337-343. doi: 10.1007/s11282-019-00409-x. Epub 2019 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验