Suppr超能文献

基于人工智能的图像分析在牙科临床决策中的应用研究:范围综述。

Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review.

机构信息

Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia.

CoTreatAI, CoTreat Pty Ltd., Melbourne, Victoria, Australia.

出版信息

Clin Exp Dent Res. 2024 Dec;10(6):e70035. doi: 10.1002/cre2.70035.

Abstract

OBJECTIVES

Artificial intelligence (AI) is an emerging field in dentistry. AI is gradually being integrated into dentistry to improve clinical dental practice. The aims of this scoping review were to investigate the application of AI in image analysis for decision-making in clinical dentistry and identify trends and research gaps in the current literature.

MATERIAL AND METHODS

This review followed the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR). An electronic literature search was performed through PubMed and Scopus. After removing duplicates, a preliminary screening based on titles and abstracts was performed. A full-text review and analysis were performed according to predefined inclusion criteria, and data were extracted from eligible articles.

RESULTS

Of the 1334 articles returned, 276 met the inclusion criteria (consisting of 601,122 images in total) and were included in the qualitative synthesis. Most of the included studies utilized convolutional neural networks (CNNs) on dental radiographs such as orthopantomograms (OPGs) and intraoral radiographs (bitewings and periapicals). AI was applied across all fields of dentistry - particularly oral medicine, oral surgery, and orthodontics - for direct clinical inference and segmentation. AI-based image analysis was use in several components of the clinical decision-making process, including diagnosis, detection or classification, prediction, and management.

CONCLUSIONS

A variety of machine learning and deep learning techniques are being used for dental image analysis to assist clinicians in making accurate diagnoses and choosing appropriate interventions in a timely manner.

摘要

目的

人工智能(AI)是牙科领域的一个新兴领域。AI 正逐渐融入牙科领域,以改善临床牙科实践。本范围综述的目的是调查 AI 在临床牙科决策中的图像分析中的应用,并确定当前文献中的趋势和研究空白。

材料和方法

本综述遵循系统评价和荟萃分析扩展的首选报告项目(PRISMA-ScR)提供的指南。通过 PubMed 和 Scopus 进行了电子文献检索。在去除重复项后,根据标题和摘要进行了初步筛选。根据预先确定的纳入标准进行了全文审查和分析,并从合格文章中提取数据。

结果

在返回的 1334 篇文章中,有 276 篇符合纳入标准(共包含 601,122 张图像),并纳入定性综合分析。大多数纳入的研究都在牙科射线照片(如全景 X 光片和口腔内 X 光片)上使用卷积神经网络(CNN)。AI 应用于牙科的所有领域——特别是口腔医学、口腔外科和正畸学——用于直接的临床推断和分割。基于 AI 的图像分析用于临床决策过程的几个组成部分,包括诊断、检测或分类、预测和管理。

结论

各种机器学习和深度学习技术正被用于牙科图像分析,以帮助临床医生及时做出准确诊断并选择适当的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c63b/11599430/f04783878e54/CRE2-10-e70035-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验