文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用生物质基活性炭从水溶液中去除阴离子和阳离子染料。

The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon.

作者信息

Nizam Nurul Umairah M, Hanafiah Marlia M, Mahmoudi Ebrahim, Halim Azhar A, Mohammad Abdul Wahab

机构信息

Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.

Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.

出版信息

Sci Rep. 2021 Apr 21;11(1):8623. doi: 10.1038/s41598-021-88084-z.


DOI:10.1038/s41598-021-88084-z
PMID:33883637
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8060261/
Abstract

In this study, two biomass-based adsorbents were used as new precursors for optimizing synthesis conditions of a cost-effective powdered activated carbon (PAC). The PAC removed dyes from an aqueous solution using carbonization and activation by KOH, NaOH, and HSO. The optimum synthesis, activation temperature, time and impregnation ratio, removal rate, and uptake capacity were determined. The optimum PAC was analyzed and characterized using Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), Zeta potential, and Raman spectroscopy. Morphological studies showed single-layered planes with highly porous surfaces, especially PAC activated by NaOH and HSO. The results showed that the experimental data were well-fitted with a pseudo-second-order model. Based on Langmuir isotherm, the maximum adsorption capacity for removing methylene blue (MB) was 769.23 mg g and 458.43 mg g for congo red (CR). Based on the isotherm models, more than one mechanism was involved in the adsorption process, monolayer for the anionic dye and multilayer for the cationic dye. Elovich and intraparticle diffusion kinetic models showed that rubber seed shells (RSS) has higher α values with a greater tendency to adsorb dyes compared to rubber seed (RS). A thermodynamic study showed that both dyes' adsorption process was spontaneous and exothermic due to the negative values of the enthalpy (ΔH) and Gibbs free energy (ΔG). The change in removal efficiency of adsorbent for regeneration study was observed in the seventh cycles, with a 3% decline in the CR and 2% decline in MB removal performance. This study showed that the presence of functional groups and active sites on the produced adsorbent (hydroxyl, alkoxy, carboxyl, and π - π) contributed to its considerable affinity for adsorption in dye removal. Therefore, the optimum PAC can serve as efficient and cost-effective adsorbents to remove dyes from industrial wastewater.

摘要

在本研究中,两种基于生物质的吸附剂被用作新型前驱体,以优化具有成本效益的粉末活性炭(PAC)的合成条件。通过用KOH、NaOH和HSO进行碳化和活化,PAC从水溶液中去除染料。确定了最佳合成、活化温度、时间和浸渍比、去除率及吸附容量。使用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、Zeta电位和拉曼光谱对最佳PAC进行了分析和表征。形态学研究表明存在具有高度多孔表面的单层平面,特别是由NaOH和HSO活化的PAC。结果表明,实验数据与准二级模型拟合良好。基于朗缪尔等温线,去除亚甲基蓝(MB)的最大吸附容量为769.23 mg/g,去除刚果红(CR)的最大吸附容量为458.43 mg/g。基于等温线模型,吸附过程涉及不止一种机制,阴离子染料为单层吸附,阳离子染料为多层吸附。埃洛维奇模型和颗粒内扩散动力学模型表明,与橡胶籽(RS)相比,橡胶籽壳(RSS)具有更高的α值,对染料的吸附倾向更大。热力学研究表明,由于焓变(ΔH)和吉布斯自由能(ΔG)为负值,两种染料的吸附过程都是自发的且放热的。在再生研究的第七个循环中观察到吸附剂去除效率的变化,CR的去除性能下降了3%,MB的去除性能下降了2%。本研究表明,所制备的吸附剂上的官能团和活性位点(羟基、烷氧基、羧基和π-π)有助于其在染料去除中具有相当大的吸附亲和力。因此,最佳PAC可作为高效且经济高效的吸附剂用于去除工业废水中的染料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/8e251c7f2ab5/41598_2021_88084_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/6bb279ba70eb/41598_2021_88084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/23455368df03/41598_2021_88084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/3b1c911860f5/41598_2021_88084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/d7a75488820f/41598_2021_88084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/9276d1157980/41598_2021_88084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/8dd91fc66f2e/41598_2021_88084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/fd974903526a/41598_2021_88084_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/2814f188d9cf/41598_2021_88084_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/721993c02bb9/41598_2021_88084_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/8e251c7f2ab5/41598_2021_88084_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/6bb279ba70eb/41598_2021_88084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/23455368df03/41598_2021_88084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/3b1c911860f5/41598_2021_88084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/d7a75488820f/41598_2021_88084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/9276d1157980/41598_2021_88084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/8dd91fc66f2e/41598_2021_88084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/fd974903526a/41598_2021_88084_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/2814f188d9cf/41598_2021_88084_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/721993c02bb9/41598_2021_88084_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5185/8060261/8e251c7f2ab5/41598_2021_88084_Fig10_HTML.jpg

相似文献

[1]
The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon.

Sci Rep. 2021-4-21

[2]
Methylene blue and Congo red dye elimination from synthetic wastewater using seed pod powder: isotherm and kinetic and mechanistic studies.

Int J Phytoremediation. 2024

[3]
Kinetic, isotherm, and thermodynamic studies of the adsorption of dyes from aqueous solution by cellulose-based adsorbents.

Water Sci Technol. 2018-6

[4]
Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent.

Ecotoxicol Environ Saf. 2017-11-9

[5]
Kinetics, Isotherm and Thermodynamic Studies for Efficient Adsorption of Congo Red Dye from Aqueous Solution onto Novel Cyanoguanidine-Modified Chitosan Adsorbent.

Polymers (Basel). 2021-12-18

[6]
Multifunctional Ternary NLP/ZnO@l-cysteine--PANI Bionanocomposites for the Selective Removal of Anionic and Cationic Dyes from Synthetic and Real Water Samples.

ACS Omega. 2022-11-30

[7]
Propensity of a low-cost adsorbent derived from agricultural wastes to interact with cationic dyes in aqueous solutions.

Environ Monit Assess. 2023-8-17

[8]
Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: A detail insight.

Environ Pollut. 2020-7-4

[9]
Adsorptive removal of direct red 80 and methylene blue from aqueous solution by potato peels: a comparison of anionic and cationic dyes.

Water Sci Technol. 2021-3

[10]
Effective Magnetic MOFs Adsorbent for the Removal of Bisphenol A, Tetracycline, Congo Red and Methylene Blue Pollutions.

Nanomaterials (Basel). 2021-7-26

引用本文的文献

[1]
Optimized Adsorption of Dyes and Antibiotics onto Natural Acacia Ataxacantha for Water Treatment.

ACS Omega. 2025-6-6

[2]
Evaluating the Effect of Resorcin[4]Arenes Conformational Structures on the Remediation of Methylene Blue in Water.

ACS Omega. 2025-3-20

[3]
Facile synthesis of ZIF-8@GO composites for enhanced adsorption of cationic and anionic dyes from their aqueous solutions.

RSC Adv. 2025-3-20

[4]
Three different methods for ZnO-RGO nanocomposite synthesis and its adsorption capacity for methylene blue dye removal in a comparative study.

BMC Chem. 2025-1-18

[5]
Advanced analysis via statistical physics model to study the efficiency of catechol removal from wastewater using Brazil nut shell activated carbon.

Sci Rep. 2024-12-30

[6]
Lignin-Furanic Rigid Foams: Enhanced Methylene Blue Removal Capacity, Recyclability, and Flame Retardancy.

Polymers (Basel). 2024-11-27

[7]
High-performance activated carbon from coconut shells for dye removal: study of isotherm and thermodynamics.

RSC Adv. 2024-10-24

[8]
Modeling and optimization of direct dyes removal from aqueous solutions using activated carbon produced from sesame shell waste.

Sci Rep. 2024-10-22

[9]
Salinity-responsive hyperaccumulation of flavonoids in Spirodela polyrrhiza, resultant maneuvering in the structure and antimicrobial as well as azo dye decontamination profile of biofabricated zinc oxide nanoentities.

Sci Rep. 2024-10-19

[10]
Advanced nano modification of ecofriendly glauconite clay for high efficiency methylene blue dye adsorption.

Sci Rep. 2024-10-9

本文引用的文献

[1]
Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel.

Chemosphere. 2021-5

[2]
Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling.

Environ Pollut. 2021-3-1

[3]
Simultaneous removal of Congo red and cadmium(II) from aqueous solutions using graphene oxide-silica composite as a multifunctional adsorbent.

J Environ Sci (China). 2020-6-18

[4]
Iron-induced behavioural and biochemical responses of charophytes in consequence of phosphates coagulant addition: Threats to lake ecosystems restoration.

Chemosphere. 2020-4-24

[5]
Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids.

Environ Sci Pollut Res Int. 2020-8-5

[6]
Acrylic acid functionalized graphene oxide: High-efficient removal of cationic dyes from wastewater and exploration on adsorption mechanism.

Chemosphere. 2020-7-23

[7]
Highly efficient and fast removal of colored pollutants from single and binary systems, using magnetic mesoporous silica.

Chemosphere. 2020-7-26

[8]
Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in-situ precipitation of Cr(III).

Chemosphere. 2020-7-5

[9]
Optimized parameters of the electrocoagulation process using a novel reactor with rotating anode for saline water treatment.

Environ Pollut. 2020-6-22

[10]
High efficient dye removal with hydrolyzed ethanolamine-Polyacrylonitrile UF membrane: Rejection of anionic dye and selective adsorption of cationic dye.

Chemosphere. 2020-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索