Suppr超能文献

同步视频稳定与卷帘快门去除

Simultaneous Video Stabilization and Rolling Shutter Removal.

作者信息

Wu Huicong, Xiao Liang, Wei Zhihui

出版信息

IEEE Trans Image Process. 2021;30:4637-4652. doi: 10.1109/TIP.2021.3073865. Epub 2021 May 3.

Abstract

Due to the delay in the row-wise exposure and the lack of stable support when a photographer holds a CMOS camera, video jitter and rolling shutter distortion are closely coupled degradations in the captured videos. However, previous methods have rarely considered both phenomena and usually treat them separately, with stabilization approaches that are unable to handle the rolling shutter effect and rolling shutter removal algorithms that are incapable of addressing motion shake. To tackle this problem, we propose a novel method that simultaneously stabilizes and rectifies a rolling shutter shaky video. The key issue is to estimate both inter-frame motion and intra-frame motion. Specifically, for each pair of adjacent frames, we first estimate a set of spatially variant inter-frame motions using a neighbor-motion-aware local motion model, where the classical mesh-based model is improved by introducing a new constraint to enhance the neighbor motion consistency. Then, different from other 2D rolling shutter removal methods that assume the pixels in the same row have a single intra-frame motion, we build a novel mesh-based intra-frame motion calculation model to cope with the depth variation in a mesh row and obtain more faithful estimation results. Finally, temporal and spatial motion constraints and an adaptive weight assignment strategy are considered together to generate the optimal warping transformations for different motion situations. Experimental results demonstrate the effectiveness and superiority of the proposed method when compared with other state-of-the-art methods.

摘要

由于逐行曝光的延迟以及摄影师手持CMOS相机时缺乏稳定支撑,视频抖动和卷帘快门失真在捕获的视频中是紧密相关的退化现象。然而,以往的方法很少同时考虑这两种现象,通常将它们分开处理,即稳定方法无法处理卷帘快门效应,而卷帘快门去除算法无法解决运动抖动问题。为了解决这个问题,我们提出了一种新颖的方法,该方法能同时稳定和校正卷帘快门抖动视频。关键问题是估计帧间运动和帧内运动。具体来说,对于每对相邻帧,我们首先使用邻域运动感知局部运动模型估计一组空间变化的帧间运动,其中通过引入新的约束改进经典的基于网格的模型,以增强邻域运动一致性。然后,与其他假设同一行中的像素具有单个帧内运动的二维卷帘快门去除方法不同,我们构建了一种新颖的基于网格的帧内运动计算模型,以应对网格行中的深度变化并获得更准确的估计结果。最后,综合考虑时间和空间运动约束以及自适应权重分配策略,为不同的运动情况生成最优的扭曲变换。实验结果表明,与其他现有方法相比,该方法具有有效性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验