Suppr超能文献

AutoMER:用于微表情识别的时空神经架构搜索。

AutoMER: Spatiotemporal Neural Architecture Search for Microexpression Recognition.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6116-6128. doi: 10.1109/TNNLS.2021.3072290. Epub 2022 Oct 27.

Abstract

Facial microexpressions offer useful insights into subtle human emotions. This unpremeditated emotional leakage exhibits the true emotions of a person. However, the minute temporal changes in the video sequences are very difficult to model for accurate classification. In this article, we propose a novel spatiotemporal architecture search algorithm, AutoMER for microexpression recognition (MER). Our main contribution is a new parallelogram design-based search space for efficient architecture search. We introduce a spatiotemporal feature module named 3-D singleton convolution for cell-level analysis. Furthermore, we present four such candidate operators and two 3-D dilated convolution operators to encode the raw video sequences in an end-to-end manner. To the best of our knowledge, this is the first attempt to discover 3-D convolutional neural network (CNN) architectures with a network-level search for MER. The searched models using the proposed AutoMER algorithm are evaluated over five microexpression data sets: CASME-I, SMIC, CASME-II, CAS(ME) ∧2 , and SAMM. The proposed generated models quantitatively outperform the existing state-of-the-art approaches. The AutoMER is further validated with different configurations, such as downsampling rate factor, multiscale singleton 3-D convolution, parallelogram, and multiscale kernels. Overall, five ablation experiments were conducted to analyze the operational insights of the proposed AutoMER.

摘要

面部微表情为微妙的人类情绪提供了有用的见解。这种无意识的情感流露展现了一个人的真实情绪。然而,视频序列中微小的时间变化非常难以建模,难以进行准确的分类。在本文中,我们提出了一种新的时空架构搜索算法,即用于微表情识别 (MER) 的 AutoMER。我们的主要贡献是一个基于新平行四边形设计的搜索空间,用于高效的架构搜索。我们引入了一个名为 3-D 单元素卷积的时空特征模块,用于细胞级分析。此外,我们提出了四个这样的候选算子和两个 3-D 扩张卷积算子,以端到端的方式对原始视频序列进行编码。据我们所知,这是首次尝试使用网络级搜索来发现用于 MER 的 3-D 卷积神经网络 (CNN) 架构。使用所提出的 AutoMER 算法搜索到的模型在五个微表情数据集上进行了评估:CASME-I、SMIC、CASME-II、CAS(ME)∧2 和 SAMM。所提出的生成模型在定量上优于现有的最先进方法。还使用不同的配置(例如下采样率因子、多尺度单元素 3-D 卷积、平行四边形和多尺度核)对 AutoMER 进行了验证。总体而言,进行了五个消融实验来分析所提出的 AutoMER 的操作见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验