Suppr超能文献

Data-Driven Dynamic Multiobjective Optimal Control: An Aspiration-Satisfying Reinforcement Learning Approach.

作者信息

Mazouchi Majid, Yang Yongliang, Modares Hamidreza

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6183-6193. doi: 10.1109/TNNLS.2021.3072571. Epub 2022 Oct 27.

Abstract

This article presents an iterative data-driven algorithm for solving dynamic multiobjective (MO) optimal control problems arising in control of nonlinear continuous-time systems. It is first shown that the Hamiltonian functional corresponding to each objective can be leveraged to compare the performance of admissible policies. Hamiltonian inequalities are then used for which their satisfaction guarantees satisfying the objectives' aspirations. Relaxed Hamilton-Jacobi-Bellman (HJB) equations in terms of HJB inequalities are then solved in a dynamic constrained MO framework to find Pareto optimal solutions. Relation to satisficing (good enough) decision-making framework is shown. A sum-of-square (SOS)-based iterative algorithm is developed to solve the formulated aspiration-satisfying MO optimization. To obviate the requirement of complete knowledge of the system dynamics, a data-driven satisficing reinforcement learning approach is proposed to solve the SOS optimization problem in real time using only the information of the system trajectories measured during a time interval without having full knowledge of the system dynamics. Finally, two simulation examples are utilized to verify the analytical results of the proposed algorithm.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验