Jeske Kai, Kizilkaya Ali Can, López-Luque Iván, Pfänder Norbert, Bartsch Mathias, Concepción Patricia, Prieto Gonzalo
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
Department of Chemical Engineering, Izmir Institute of Technology, Gülbahçe Kampüsü, 35430 Izmir, Turkey.
ACS Catal. 2021 Apr 16;11(8):4784-4798. doi: 10.1021/acscatal.0c05027. Epub 2021 Apr 5.
Adjusting hydrocarbon product distributions in the Fischer-Tropsch (FT) synthesis is of notable significance in the context of so-called X-to-liquids (XTL) technologies. While cobalt catalysts are selective to long-chain paraffin precursors for synthetic jet- and diesel-fuels, lighter (C) alkane condensates are less valuable for fuel production. Alternatively, iron carbide-based catalysts are suitable for the coproduction of paraffinic waxes alongside liquid (and gaseous) olefin chemicals; however, their activity for the water-gas-shift reaction (WGSR) is notoriously detrimental when hydrogen-rich syngas feeds, for example, derived from (unconventional) natural gas, are to be converted. Herein the roles of pore architecture and oxide promoters of Lewis basic character on CoRu/AlO FT catalysts are systematically addressed, targeting the development of catalysts with unusually high selectivity to liquid olefins. Both alkali and lanthanide oxides lead to a decrease in . The latter, particularly PrO , prove effective to boost the selectivity to liquid (C) olefins without undesired WGSR activity. CO-FTIR spectroscopy suggests a dual promotion via both electronic modification of surface Co sites and the inhibition of Lewis acidity on the support, which has direct implications for double-bond isomerization reactivity and thus the regioisomery of liquid olefin products. Density functional theory calculations ascribe oxide promotion to an enhanced competitive adsorption of molecular CO versus hydrogen and olefins on oxide-decorated cobalt surfaces, dampening (secondary) olefin hydrogenation, and suggest an exacerbated metal surface carbophilicity to underlie the undesired induction of WGSR activity by strongly electron-donating alkali oxide promoters. Enhanced pore molecular transport within a multimodal meso-macroporous architecture in combination with PrO as promoter, at an optimal surface loading of 1 Pr nm, results in an unconventional product distribution, reconciling benefits intrinsic to Co- and Fe-based FT catalysts, respectively. A chain-growth probability of 0.75, and thus >70 C% selectivity to C products, is achieved alongside lighter hydrocarbon (C) condensates that are significantly enriched in added-value chemicals (67 C%), predominantly α-olefins but also linear alcohols, remarkably with essentially no CO side-production (<1%). Such unusual product distributions, integrating precursors for synthetic fuels and liquid platform chemicals, might be desired to diversify the scope and improve the economics of small-scale gas- and biomass-to-liquid processes.
在所谓的“X 到液体”(XTL)技术背景下,调整费托(FT)合成中的烃类产物分布具有重要意义。虽然钴催化剂对合成喷气燃料和柴油燃料的长链石蜡前体具有选择性,但较轻的(C)烷烃冷凝物对燃料生产的价值较低。另一方面,碳化铁基催化剂适用于与液态(和气态)烯烃化学品联产石蜡;然而,当要转化富氢合成气进料(例如源自(非常规)天然气)时,它们对水煤气变换反应(WGSR)的活性具有众所周知的不利影响。本文系统地研究了 CoRu/AlO FT 催化剂中孔结构和具有路易斯碱性的氧化物促进剂的作用,目标是开发对液态烯烃具有异常高选择性的催化剂。碱金属氧化物和镧系氧化物都会导致……的降低。后者,特别是 PrO ,被证明能有效提高对液态(C)烯烃的选择性,同时不会产生不希望的 WGSR 活性。CO-FTIR 光谱表明,通过对表面 Co 位点的电子修饰和对载体上路易斯酸性的抑制实现了双重促进,这对双键异构化反应性以及液态烯烃产物的区域异构性有直接影响。密度泛函理论计算将氧化物促进归因于在氧化物修饰钴表面上分子 CO 相对于氢和烯烃的竞争吸附增强,抑制了(二次)烯烃氢化,并表明金属表面亲碳性加剧是强给电子碱金属氧化物促进剂不希望地诱导 WGSR 活性的原因。在多峰介孔-大孔结构内增强的孔分子传输与 PrO 作为促进剂相结合,在最佳表面负载量为 1 Pr nm 时,产生了非常规的产物分布,兼顾了钴基和铁基 FT 催化剂各自的优点。实现了 0.75 的链增长概率,因此对 C 产物的选择性>70 C%,同时较轻的烃(C)冷凝物显著富含增值化学品(67 C%),主要是α-烯烃,但也有线性醇,并且基本上没有 CO 副产物(<1%)。这种整合合成燃料和液态平台化学品前体的异常产物分布,可能有助于使小规模天然气和生物质到液体过程的范围多样化并提高其经济性。